
Dynamic Reduction of Voltage Margins by Leveraging
On-chip ECC in Itanium II Processors∗

Anys Bacha
Computer Science and Engineering

The Ohio State University
bacha@cse.ohio-state.edu

Radu Teodorescu
Computer Science and Engineering

The Ohio State University
teodores@cse.ohio-state.edu

ABSTRACT
Lowering supply voltage is one of the most effective ap-
proaches for improving the energy efficiency of microproces-
sors. Unfortunately, technology limitations, such as process
variability and circuit aging, are forcing microprocessor de-
signers to add larger voltage guardbands to their chips. This
makes supply voltage increasingly difficult to scale with tech-
nology. This paper presents a new mechanism for dynam-
ically reducing voltage margins while maintaining the chip
operating frequency constant. Unlike previous approaches
that rely on special hardware to detect and recover from
timing violations caused by low-voltage execution, our solu-
tion is firmware-based and does not require additional hard-
ware. Instead, it relies on error correction mechanisms al-
ready built into modern processors. The system dynamically
reduces voltage margins and uses correctable error reports
raised by the hardware to identify the lowest, safe operating
voltage. The solution adapts to core-to-core variability by
tailoring supply voltage to each core’s safe operating level.
In addition, it exploits variability in workload vulnerability
to low voltage execution. The system was prototyped on an
HP Integrity Server that uses Intel’s Itanium 9560 proces-
sors. Evaluation using SPECjbb2005 and SPEC CPU2000
workloads shows core power savings ranging from 18% to
23%, with minimal performance impact.

1. INTRODUCTION
Power consumption is now a primary constraint on micro-

processor design spanning the entire spectrum of computing
devices, from smartphones to servers. Although semicon-
ductor technology continues to sustain the historical rate
of growth in transistor integration, the power efficiency of
such transistors is increasing at a much slower rate. Lower-

∗This work was supported in part by HP, the National
Science Foundation under grants CCF-1117799 and CCF-
1253933, and the Defense Advanced Research Projects
Agency under the PERFECT (DARPA-BAA-12-24) pro-
gram.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

ing supply voltage (Vdd) of chips is one of the most effective
techniques for improving their energy efficiency. However,
reducing the Vdd is becoming increasingly difficult going
forward. High variability in transistor parameters coupled
with increased sensitivity to fluctuations in the supply volt-
age are forcing more conservative design choices. To ensure
correct execution, high guardbands are added to the sup-
ply voltage to account for the worst case behavior of a chip.
These guardbands need to consider various factors, such as
temperature, circuit aging, process variability and workload
characteristics. As a result, Vdd margins are often unneces-
sarily conservative and translate to wasted energy.

A significant body of existing work has explored approaches
to dynamically reducing Vdd margins by adapting to run-
time operating conditions – a technique generally refered-to
as “voltage speculation.” For example, the well-known Ra-
zor [5] design dynamically lowers Vdd until occasional timing
errors occur. Additional latches running on a delayed clock
are used on the vulnerable paths to detect and recover from
these errors. More recent work by Lefurgy et al. [15] uses
on-chip critical path monitors to detect when a processor is
approaching its timing margin as a result of voltage specula-
tion. When that occurs, a control system slows the processor
frequency to avoid a timing violation.

This paper presents a new mechanism for dynamically re-
ducing voltage margins and lowering Vdd while maintain-
ing the chip operating frequency constant. Unlike previ-
ous approaches that rely on dedicated hardware to avoid
or recover from timing violations, our solution does not re-
quire additional hardware. Instead, it maintains low, but
safe operating voltage margins by leveraging error correction
(ECC) support already available in modern processors. A
key observation made in this work is that, as Vdd is lowered,
correctable errors in ECC-protected functional units mani-
fest before uncorrectable errors or data corruption. Starting
from this observation, we implement a voltage speculation
system that uses the rate and type of runtime correctable
errors as indicators for finding the lowest safe voltage point
at which each core can operate. The solution adapts to on-
chip core-to-core variability by tailoring Vdd to each core’s
safe operating level. It also adapts to variability in workload
vulnerability to low voltage execution.

The system was prototyped on an HP Integrity Server
that uses Intel’s Itanium 9560 processors. A control system
that dynamically adjusts the Vdd of four core pairs in the
8-core chip was implemented in System Firmware. The con-
trol system monitors the rate of correctable errors posted
by the hardware and makes voltage assignment decisions.

297

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2485922.2485948&domain=pdf&date_stamp=2013-06-23


The appropriate voltage level is selected to keep the pro-
cessor operating close, but still above the safety margin to
ensure correct operation. Evaluation using SPECjbb2005
and SPEC CPU2000 shows core power savings ranging from
18% to 23%, with minimal performance impact. The paper
also illustrates the effects of process variability on core-to-
core sensitivity to low-voltage operation.

Overall, this paper makes the following contributions:

• Presents a novel firmware-based technique for voltage
speculation.

• Makes the observation that on-chip correctable errors
can be used as a proxy for estimating timing margins.

• Evaluates a prototype implementation of the voltage
speculation system on an HP server using Intel’s Ita-
nium 9560 processors.

• Characterizes the impact of process variation on core-
to-core distribution of timing margins using measure-
ments on real processors.

The rest of this paper is organized as follows: Section 2
outlines the motivation for this work and examines some
experimental data. Section 3 details the design and algo-
rithms for the proposed ECC-based voltage speculation sys-
tem. Section 4 presents a prototype implementation of the
proposed system. Sections 5 and 6 present an experimental
evaluation. Section 7 details related work; and Section 8
concludes.

2. MOTIVATION
Supply voltage levels in modern microprocessors have to

account for multiple sources of uncertainty in the design
process and runtime environment. Significant challenges in
manufacturing chips with low nanometer critical dimensions
lead to high variability in circuit properties, such as speed
and power consumption. Other sources of uncertainty are
related to runtime effects and include temperature variation,
circuit aging, etc. To account for these factors, micropro-
cessor designers add large guardbands to the Vdd. These
guardbands, which can be as high as 20% [13, 22] in modern
processors, make microprocessors less energy efficient.

In order to quantify voltage margin levels in a modern
microprocessor, experiments were conducted on two Intel
Itanium II 9560 8-core processors [24] running on an HP In-
tegrity BL860c-i4 server. More details about the evaluation
platform and methodology are presented in Section 5. The
frequency of the chips was set at their nominal values accord-
ing to the product specifications. The Vdd was gradually
lowered for each core, while running a stress test workload
until system crashes or data corruption occur. The lowest
safe voltage at which each core runs reliably is recorded. The
results showed that all cores run reliably at voltages that are
significantly lower than nominal values – 12% lower, on av-
erage. In addition, design-identical cores within the same
chip have different minimum safe voltages. This is most
likely due to the impact of process variability on circuit de-
lay distribution within the chip. Figure 1 shows the nominal
and lowest safe voltages (Safe/Min) for each core in one pro-
cessor. The safe Vdd ranges between 0.95V and 1V vs. the
1.1V nominal. This core-level variability outlines the poten-
tial for core-level voltage adaptation in systems that have
the capability to regulate and deliver multiple supply volt-
ages within the chip.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

S
u
p
p
ly

 V
o
lt

ag
e 

(V
)

Nominal Vdd Safe/Min Vdd

Figure 1: (a) Nominal and Safe/Min Vdds for 8 cores of an
Intel Itanium II processor.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

E
rr

o
r 

R
a

te
 (

e
rr

o
rs

/m
in

u
te

)

Supply Voltage

U
n

s
a

fe
 V

d
d

Itanium Core

Figure 2: Correctable error rate as a function of Vdd.

In the same experiment, we record reports of correctable
errors flagged by the hardware. These correctable errors are
benign events that do not trigger exceptions or affect ap-
plication execution in any way. They are single-bit errors
that occur in ECC-protected functional units. The ECC
hardware corrects these errors and logs them for debug-
ging purposes. At nominal Vdd, correctable errors are very
rare events. As the Vdd is lowered, timing margins become
tighter and correctable errors occur with higher probability.
Figure 2 shows the correctable error rate as a function of Vdd
for one core. No errors are observed as the Vdd is dropped
by more than 10% from 1.1V to below 1V. When the sup-
ply voltage reaches 0.99V, correctable errors start to occur.
The correctable error rate increases gradually from about 1
error/minute to about 16 errors/minute as the Vdd is low-
ered further from 0.99V to 0.96V (shaded region in Figure
2). When the Vdd of the core is lowered below 0.96V, the
system no longer operates reliably.

We observe that a significant voltage range exists above
the failure Vdd at which correctable errors are frequent; but
no failures or data corruption occur. In other words, as the
voltage is lowered, cores always exhibit correctable errors
before reaching the failure Vdd. This behavior is consistent
across all the cores and chips we tested when running the
stress test workload. This indicates that correctable errors
could be used as a predictor for approaching timing margins
during voltage speculation.

3. ECC-BASED VOLTAGE SPECULATION
We present a new voltage speculation system that dy-

namically lowers Vdd and uses correctable error reports to
ensure cores do not reach unsafe operating levels. In gen-
eral, correctable error handling, as implemented in current
processors, is invisible to the Operating System (OS) and
the applications running on the system. Our system taps
into correctable error logs by configuring the hardware to
report correctable errors to a firmware layer that imple-

298



Margin Voltage

Su
pp

ly
 V

ol
ta

ge

Time

C
or

re
ct

ab
le

 E
rro

rs

Core Vdd

Core errors

Discovery phase Runtime

Figure 3: Illustration of the voltage margin discovery pro-
cess. Vdd is gradually lowered until the first correctable er-
rors are encountered. At runtime, Vdd can be raised above
the margin voltage.

ments our monitoring functions. Implementing the error
monitoring system in firmware as opposed to hardware or
the OS has multiple advantages. Firmware has a faster re-
sponse time and lower performance overhead compared to
software solutions implemented at the OS level. In addition,
the firmware-based voltage speculation system is transpar-
ent to the OS and does not require OS intervention or sup-
port. This makes the solution easily deployable and back-
ward compatible. Finally, a firmware implementation can
perform more sophisticated power management compared
to what a hardware implementation can achieve. Our solu-
tion has two main components: an error monitoring system
for identifying and logging correctable errors and a voltage
speculation governor for dynamically controlling Vdd.

3.1 Margin Voltage Discovery
We empirically determine that, for most cores and appli-

cations, the highest Vdd at which correctable errors occur is
safe and does not lead to system crashes or data corruption.
We refer to this Vdd as the “margin voltage.” The value of
the margin voltage is different for each core because of pro-
cess variation. In addition, this value can change at runtime
in response to changing operating conditions. The margin
voltage is used as a reference level by the voltage speculation
algorithms when deciding the current operating Vdd.

The margin voltage for each core is determined through
an online training/discovery phase run in firmware at sys-
tem boot time. Figure 3 illustrates this process. During the
discovery phase, the voltage of each core (or core-pair) is
progressively lowered while running a stress test application.
The stress test application is designed to exercise multiple
critical paths within the core. When the first correctable
errors are encountered, the margin voltage is computed and
recorded in firmware for that core. At runtime, the firmware
continues to monitor the processor for correctable errors.
The correctable error rate can change continuously as a re-
sult of changes in dynamic conditions such as temperature,
aging or workloads.

3.2 Aggressive vs. Conservative Cores
Because of process variation, cores react differently to low-

voltage operation. Some cores exhibit a gradual increase in
the correctable error rate for several voltage steps before a

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

E
rr

o
r 

R
a

te
 (

e
rr

o
rs

/m
in

u
te

)

Supply Voltage

U
n

s
a

fe
 V

d
d

"Aggressive" Core "Conservative" Core

Figure 4: Correctable error rate as a function of Vdd for an
aggressive and a conservative core.

crash occurs. For these cores, which we call “aggressive,” the
distance between the failure voltage and the voltage margin
is fairly large. For other cores, which we call “conservative,”
the failure voltage is much closer to the margin voltage. Fig-
ure 4 shows the error rate versus Vdd for an aggressive and
a conservative core.

The reason aggressive cores exhibit a more graceful degra-
dation while conservative cores reach their failure voltage
soon after exhibiting their first correctable errors is likely re-
lated to the type, number and distribution of critical paths
that are slowed by variation in each core category. In aggres-
sive cores, affected critical paths are likely better protected
by ECC. This explains why errors are raised at voltages
that are significantly higher than the failure voltage. Con-
servative cores, on the other hand, have slow critical paths
that are less protected. This hypothesis is also supported
by the types of correctable errors that each core class pre-
dominantly exhibits. Aggressive cores tend to trigger cor-
rectable cache errors while conservative cores mostly trig-
ger correctable register file errors. Since the cache is larger
and has more critical paths, it is likely to trigger more cor-
rectable errors when slowed down by variation compared to
the register file.

Our system takes advantage of the more predictable be-
havior of aggressive cores in order to extract additional power
savings. For these cores, a more aggressive (but still safe)
voltage speculation algorithm is used to lower the supply
voltage below the margin voltage.

3.3 Dynamic Voltage Speculation
A firmware-based Voltage Speculation Governor is respon-

sible for implementing the dynamic voltage speculation al-
gorithms at core and core-pair granularities. The governor
receives input from the error monitoring system and reacts
to information about error rates according to predefined al-
gorithms. The governor is also responsible for coordinating
the margin voltage discovery phase. Aggressive and conser-
vative cores are handled differently by the voltage specula-
tion algorithms.

3.3.1 Conservative Speculation
Conservative cores are more vulnerable to low-voltage op-

eration. To ensure correct execution, we add a small safety
padding (10mV in our experiments) when computing their
margin voltage. Conservative cores are never allowed to
run below the margin voltage. The Vdd can, however, be
raised temporarily above the margin voltage if correctable
errors occur, as illustrated in Figure 3. If a conservative
core encounters a correctable error, the governor raises its

299



Margin Voltage
Su

pp
ly

 V
ol

ta
ge

Time

Core Vdd
C

or
re

ct
ab

le
 e

rro
rs

Max error threshold

burst 
testing

Min error threshold

Figure 5: Diagram of voltage speculation algorithm for ag-
gressive cores.

Vdd in increments of 10 mV per correctable error. The volt-
age continues to be increased until no correctable errors are
observed. If no error is observed for a while, the governor
attempts to lower the Vdd again in 5 mV decrements after
every minute. Decrementing the voltage continues until the
margin voltage is reached again. If correctable errors occur
repeatedly at the margin voltage, the margin can be raised
permanently.

3.3.2 Aggressive Speculation
Aggressive cores can, in many cases, operate below the

margin voltage. As a result, they are expected to period-
ically encounter correctable errors. In order to ensure re-
liable operation, the correctable error rate has to be main-
tained below an empirically determined threshold. The Volt-
age Speculation Governor is responsible for discovering and
maintaining that safe Vdd at runtime. This process is il-
lustrated in Figure 5. The discovery process begins with
the core at the margin voltage. The Voltage Speculation
Governor gradually lowers Vdd below the margin as long as
the error rate remains below the Max error threshold. In
our implementation, that threshold is 1 error per minute.
Once that threshold is reached, the governor will maintain
a constant Vdd and continue to monitor the error rate.

Some workloads do not exercise critical paths that expose
correctable errors. Aggressive speculation is not appropriate
for such applications. This is because, without the feedback
obtained from the correctable error rate, the governor can-
not safely search for the safe operating point. Therefore,
the governor has to make a determination as to whether an
application is suitable for aggressive treatment or not. This
is achieved by performing “burst testing” (Figure 5) during
which the voltage is dropped from the margin by 20mV.
The voltage rail is modulated over a 6 second period (Vdd
below safety for 5 seconds followed by Vdd back to safety
for 1 second) with up to 5 retry cycles. If a correctable
error is triggered during burst testing, the core enters ag-
gressive mode and the Vdd is lowered below the margin. If
correctable errors are not observed during burst testing, ag-
gressive speculation is disabled for the next interval and the
core continues to run at the margin voltage. The potential
for aggressive speculation is evaluated once every minute.

Aggressive speculation ends if any of the following events
occur: (1) correctable error rate exceeds the Max error thresh-
old indicating approaching timing margins, (2) correctable
error rate is below the Min error threshold indicating the

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  5  10  15  20
 0

 10

 20

 30

 40

 50

S
u

p
p

ly
 V

o
lt
a

g
e

 (
V

)

E
rr

o
r 

R
a

te
 (

e
rr

o
rs

/m
in

u
te

)

Time (minutes)

Margin Voltage Error rate Core Voltage

Figure 6: The effects of the voltage speculation algorithm
on Vdd while running the stress test application on an ag-
gressive core.

Core mix Speculation Margin Voltage

All conservative Conservative MAX(All Margin Vdds)

Some conservative Conservative MAX(All Margin Vdds)

All aggressive Aggressive MAX(All Margin Vdds)

Table 1: Speculation classification and margin voltage selec-
tion based on the type of cores sharing a common voltage
line within a core cluster.

workload is no longer suitable for aggressive speculation, or
(3) a context switch is signaled by the OS indicating the
need to reevaluate suitability for aggressive speculation.

To illustrate the behavior of the voltage speculation algo-
rithm, Figure 6 shows a 25 minute trace of Vdd and the
correctable error rate for an aggressive core running the
stress test workload. We can see that the algorithm pro-
gressively lowers supply voltage until the correctable error
rate reaches its target. It then keeps the Vdd at this level
until the number of correctable errors increases above its
Max error threshold. When that happens, the voltage is
immediately raised to the margin voltage. We can see that
occur around minutes 2, 9, 14, 17 and 22.

3.3.3 Speculation in Core Clusters
Most processors do not currently support Vdd assignment

at core granularity. In some cases, all cores are assigned to
a single Vdd domain, while in others, Vdd lines are shared
by clusters of cores. For instance, in the Itanium II proces-
sor used in our experiments, Vdd lines are shared by core
pairs. When multiple cores share a voltage domain, voltage
speculation is performed at domain granularity. The char-
acteristics of all cores in a domain have to be considered
when choosing the margin voltage or the aggressiveness of
the speculation. Table 1 summarizes the speculation options
as a function of the core mix. If a cluster has at least one
conservative core, speculation for that cluster has to be con-
servative. If all cores in a cluster are aggressive, speculation
for the cluster can be aggressive. The margin voltage for the
cluster is set to the highest of the core margins.

4. PROTOTYPE IMPLEMENTATION
The proposed voltage speculation system was prototyped

on an HP Integrity Server that uses Intel’s Itanium 9560
processors. Figure 7 depicts the overall architecture of the
prototype. It outlines the main components of the System
Firmware: the Processor Abstraction Layer (PAL), the Sys-
tem Abstraction Layer (SAL) and how our solution inte-
grates into the existing framework. Our prototype integrates

300



System Abstraction Layer

Fi
rm

wa
re

ECC 
events

Process 
error

Error Monitor Evaluate 
Vdd

Voltage Speculation 
Governor

Operating System

Resume 
Execution

Periodic 
PMI

Ha
rd

wa
re

CoreCore CoreCore

Processor Abstraction Layer

Figure 7: Main components of the firmware-based imple-
mentation of our voltage speculation system in the Intel Ita-
nium II processor. The components we added to the system
firmware are highlighted in gray.

primarily into the SAL layer; but modifications outside of
SAL are needed to facilitate the evaluation of our solution.

The Processor Abstraction Layer (PAL) encapsulates in-
terfaces to various processor specific functions made avail-
able to the System Firmware modules for consumption dur-
ing runtime. These include power management, error record
extraction and virtualization to name a few [9]. In addi-
tion to PAL serving the role of abstracting common features
through procedure calls, it provides hooks for communicat-
ing with the rest of System Firmware via architected entry-
points. Access to entry-points is needed in order to transfer
control between PAL and other System Firmware entities.
Transfer of control between PAL and other entities takes
place upon the occurrence of hardware events, such as cache
errors and resets. Our solution mainly uses PAL calls for
extracting and clearing error information generated by the
processor hardware.

The second level of System Firmware in this design is the
System Abstraction Layer (SAL). SAL serves the purpose
of initializing, configuring and testing the platform’s hard-
ware resources during the initial boot phase. This is done in
preparation for handoff to the OS. SAL also plays the role
of providing the interface to the OS. Since the Operating
System doesn’t have enough knowledge about the specifics
of a given platform, it relies on SAL to perform certain ac-
tions on its behalf. Such actions include the gathering of
machine state information in response to correctable cache
and register file error events, as well as the re-initialization
of processors [12]. The Error Monitor and Voltage Specula-
tion Governor modules of our prototype are implemented at
the SAL level.

4.1 Error Monitor for Margin Detection
The Error Monitor is responsible for capturing correctable

error activity from the processor cores. This component

is implemented in the SAL layer of the System Firmware.
Normally, processor correctable errors are not immediately
made visible to the firmware. This is because hardware has
the ability to correct them without software intervention.
The firmware code is therefore modified to expose these er-
rors to the Error Monitor. The processor is configured to
always hand off to System Firmware whenever correctable
errors occur. Upon the detection of a correctable error, the
faulted core vectors to an error handler. This is shown as an
“ECC event” in Figure 7. The handler begins by saving the
necessary processor state information that allows the core
to seamlessly resume normal execution when the firmware
interrupt completes. The handler then proceeds to set up
the execution resources needed to run the high-level code of
the Error Monitor (C-based code). This way, firmware can
make stacked procedure calls without clobbering what the
OS was using prior to the interrupt.

Once inside the Monitor, the core calls into PAL to ex-
tract the error record. The error record is decoded to de-
termine the type of error that occurred on the core. The
Error Monitor can distinguish between multiple error types
such as cache, register-file, TLB and microarchitecture re-
lated errors. It can also differentiate between instruction
cache errors, data cache errors and the corresponding levels
at which they occur. This information is not currently used
by the voltage speculation algorithm, but could prove useful
in future work. The extracted error is timestamped; and the
error rate information is updated in a shared repository.

The Error Monitor treats error logging differently for ag-
gressive cores compared to conservative ones. A correctable
error flagged by a conservative core will trigger a call to the
Voltage Speculation Monitor. This is because all correctable
errors lead to raising the voltage in conservative cores. For
aggressive cores, the Error Monitor is responsible for up-
dating the error rate data and timestamp information for
every correctable error. The Voltage Speculation Governor
will not be invoked on every ECC event. The Governor
will instead periodically examine the error rate reported by
the Error Monitor and take appropriate action. Finally, the
Monitor handler clears the error from the processor and re-
sumes the interrupted core to normal execution.

4.2 Voltage Speculation Governor
The Voltage Speculation Governor is responsible for mak-

ing dynamic voltage adaptation decisions based on feedback
from the Error Monitor. At runtime, the governor evalu-
ates and adjusts the operating voltage periodically (once a
minute in our experiments). This is achieved by setting
up the hardware to periodically generate a special inter-
rupt called a Platform Management Interrupt (PMI) that
is handled by System Firmware rather than by the OS. This
mechanism prompts the interrupted core to enter the PMl
handler where the Voltage Speculation Governor code runs.
The OS has no knowledge that this is taking place.

The Governor performs multiple tasks. For aggressive
cores, it verifies that the current error rate is between the
Min and Max thresholds. If it is either below Min or above
Max, it will restore the voltage to a safer level. If, on the
other hand, the error rate is significantly below the Max
threshold, the Governor will attempt to lower Vdd by an-
other increment. For conservative cores the Vdd is raised by
an increment for each correctable error flagged. Once the
Governor determines the appropriate action to take, it writes

301



Processor Architecture
Type Itanium II 9560
Cores 8, out-of-order
Frequency 2.53GHz nominal
Nominal Vdd 1.1V
Register file size 1.38KB int, 1.25KB fp
L1 data cache 4-way 16KB, 1-cycle
L1 instruction cache 4-way 16KB, 1-cycle
L2 data cache 8-way 256KB, 9-cycle
L2 instruction cache 8-way 512KB, 9-cycle
L3 unified 32-way 32MB, 50-cycles
QPI Speed 6.4 GT/s
Max TDP 170 W
Technology 32nm
Other
Memory DDR3 32GB
Disk Drive SAS 76GB
Operating System HP-UX 11i v3
Server HP BL860c-i4 blade
Independent voltage domains 6

Table 2: Architectural and system details of the BL860-
i4 Integrity Server and Itanium 9560 processor used in the
evaluation [10, 11].

Structure ECC Type
Integer Register-file SECDED
Floating-point Register-file SECDED
L2 instruction cache (data) SECDED
L2 instruction cache (tags) SECDED
L2 data cache (data) SECDED

Table 3: Summary of the ECC protection in the Intel Ita-
nium 9560 processor core [23].

to the necessary registers to initiate the power management
action. When the requested voltage setting is reached, the
Governor releases the core back to the OS to resume execu-
tion.

5. EVALUATION METHODOLOGY

5.1 System Architecture
A BL860c-i4 Integrity Server from HP was used for pro-

totyping and evaluation purposes. The server was equipped
with two Intel Itanium 9560 processors, each possessing eight
cores with hyperthreading. The server was provisioned with
32GB of DDR3 memory and a 73GB SAS drive. The system
ran the HP-UX Operating System. Table 2 lists additional
detailed information about the evaluation system, including
the processor’s architectural features, power and frequency
specifications, technology, etc.

According to the available documentation [23], the Ita-
nium 9560 processor has several functional blocks protected
by ECC. These are listed in Table 3.

5.2 Experimental Framework
For the purpose of logging and reporting experimental

data, an entire core was reserved for System Firmware use.
Dedicating a core to handling such measurements greatly
simplified the data collection process and minimized inter-
ference with the workloads under test. However, in order
to facilitate such retention of hardware resources from the
OS, additional firmware layers had to be modified. These
layers are: the Advanced Configuration and Power Inter-

face (ACPI) and the Unified Extensible Firmware Interface
(UEFI). Modifying these layers enabled the live data collec-
tion we needed while the OS was active. This data included
average power, voltage settings and temperature in addition
to the error rate information. System Firmware relied on
mechanisms defined in ACPI to claim ownership of a core for
evaluation purposes. Changes in the UEFI component were
restricted to the system’s memory map. System Firmware
used UEFI interfaces to mark a set of memory pages for
private use in order to log the aforementioned data. Mark-
ing these regions was necessary to prevent them from being
reclaimed by the OS.

Power consumption information was collected via System
Firmware by sampling a set of processor registers. We collect
the power information for each core pair in addition to the
uncore component. We also log the temperature information
for each core. To keep the logging overhead manageable for
long runs, the aforementioned data was sampled every 1ms.

Special hooks were developed to record logs of correctable
errors reported by the hardware. These were used to char-
acterize the correctable error profile of each core at multiple
voltage levels. Error logs were also kept while running the
voltage speculation algorithm. These were used to construct
time based voltage and error rate traces.

The processors in this system have multiple power deliv-
ery lines – one for each pair of cores and a separate one for
the “uncore” components, such as the L3 cache and memory
controllers [24]. The supply voltage of each of these power
lines can be independently modulated. The voltage specula-
tion module in System Firmware controls this modulation.
In order to accommodate the testing of multiple configura-
tions without rebuilding the firmware, an NVRAM based
configuration file is used. Based on this information, the
governor modulates the appropriate voltage rails according
to our algorithm.

Experiments that examined the sensitivity of each core in
response to low voltage were conducted by exercising a single
core at a time. The core pair that shares a supply line with
the one under evaluation was left idle. This allowed the
collection of data at core granularity even with core pairs
sharing voltage rails.

5.3 Benchmarks
Two benchmark suites were used in the evaluation: SPEC

CPU2000 and SPECjbb2005. SPECjbb2005 was configured
to run a total of 8 warehouses that were launched on both
threads of each core under test. For SPEC CPU2000, a full
instance of each benchmark was launched on each thread of
all cores under test. We ran all benchmarks from CPU2000
(listed in Table 4) except for wupwise and apsi, which we
could not successfully run on this system. A stress test appli-
cation consisting of CPU-intensive kernels, as well as cache
and memory-intensive kernels, was used to characterize the
processor’s voltage margins. Benchmarks were run back-to-
back to ensure context switches are handled correctly by the
voltage speculation algorithm

6. EVALUATION
This section examines the power and energy savings from

our dynamic voltage speculation system as well as its im-
pact on system performance. We begin by characterizing the
process variation effects on voltage margins and the types of
errors triggered at low Vdd.

302



Suite Benchmark
SPECjbb2005 8 warehouses
SPECint gzip, vpr, gcc, mcf,crafty, parser,

eon, perbmk, gap, vortex, bzip2, twolf
twolf, swim, mgrid, applu, mesa,

SPECfp galgel, art, equake, facerec,
ammp, art, lucas, fma3d, sixtrack
CPU-intensive (FP and INT) kernels.

Stress test Cache and memory-intensive kernels.
Designed to stress test HP servers.

Table 4: Applications and benchmarks used in the evalua-
tion.

6.1 Process Variation Effects
In order to characterize the effects of process variation

on voltage margins, we run the stress test application on
each core while progressively lowering Vdd. We record the
lowest supply voltage at which the stress test application
runs successfully for at least 20 minutes with no crashes or
data corruption. The distribution of minimum safe Vdd was
shown in Figure 1 and discussed in Section 2. In the same
experiment, we logged all correctable errors reported by the
hardware at the Safe/Min Vdd.

Figure 8 shows the distribution of correctable errors for
each core for the two Itanium II processors in our system.
Both processors exhibit large core-to-core variability in the
type and rate of correctable errors. In processor A (Figure
8a), cores 0,1 and 2 trigger a large number of correctable
cache errors while core 4 exhibits a large number of cor-
rectable register file errors. Processor B (Figure 8b) shows
similar high variability, but with a different distribution of
error rates and types. Processor B triggers fewer cache er-
rors and slightly more correctable register file errors. The
high variability in behavior is especially interesting given
that the tests are conducted consistently on all cores, run-
ning the same exact workload under the same conditions.
Moreover, the error rates and distributions are largely re-
producible over multiple, identical runs. Within-die process
variability is very likely the root cause of the observed error
distributions.

In general, we observed that correctable cache errors have
a more graceful onset than register file errors. As a result,
correctable cache errors are a more reliable predictor for
aggressive cores. The presence of correctable register file
errors, on the other hand, is an indication that the core’s
execution pipeline is in the critical path. As a result, these
cores are less tolerant of aggressive voltage speculation.

6.2 Dynamic Adaptation to Workload
The Voltage Speculation Governor continuously adjusts

the supply voltage to ensure reliable operation. For aggres-
sive cores, the governor attempts to lower the supply voltage
below the margin voltage, as long as the rate of correctable
errors is maintained at a targeted level. Figure 9 shows a
trace of the supply voltage over time for the SPECjbb work-
load. The correctable error rate for the same interval is also
shown. The Vdd is initially set at the margin voltage. The
Voltage Speculation Governor lowers the voltage in 5mV
decrements every minute of operation. This continues as
long as the core exhibits an error rate of 1 correctable error
per minute. The voltage is immediately raised back to the
safety voltage when one of two events occurs: (1) the error

 0

 50

 100

 150

 200

 250

 300

core0 core1 core2 core3 core4 core5 core6 core7

C
o

rr
e

c
ta

b
le

 E
rr

o
rs

Correctable Cache Errors Correctable RF Errors

(a) Processor A

 0

 50

 100

 150

 200

 250

core0 core1 core2 core3 core4 core5 core6 core7

C
o

rr
e

c
ta

b
le

 E
rr

o
rs

(b) Processor B

Figure 8: Distribution of correctable error rates and error
types over a 20 minute run of the stress test application at
the Safe/Min voltage, for two Itanium 8-core processors.

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  5  10  15  20
 0

 10

 20

 30

 40

 50

S
u

p
p

ly
 V

o
lt
a

g
e

 (
V

)

E
rr

o
r 

R
a

te
 (

p
e

r 
m

in
u

te
)

Time (minutes)

Margin Voltage Error rate Core Voltage

Figure 9: Dynamic adaptation of supply voltage to runtime
conditions in SPECjbb running on an aggressive core.

rate increases above 1 error per minute or (2) no correctable
errors are triggered over the previous interval. The param-
eters for the voltage speculation algorithm are empirically
validated and conservative to ensure reliable operation.

Voltage speculation can also be jointly applied to core
pairs when they share a voltage line. Aggressive specula-
tion can be used if both cores and applications satisfy the
requirements for aggressive operation. Figure 10 shows Vdd
for a pair of aggressive cores, each running an instance of the
stress test application. The core pair follows the aggressive
speculation algorithm and lowers Vdd below the margin. At
some points in the execution, however, the Governor has to
raise the Vdd above the margin voltage. This happens when
the combined correctable error rate for the two cores exceeds
the Max threshold. The Vdd is raised in 10mV increments
until the correctable error rate falls below the threshold.

6.3 Power Savings
Voltage Speculation lowers the supply voltage by an av-

erage of 9-11% across all the benchmarks we test, as shown
in Figure 11. The data is collected on both Processors A
and B. For processor A, we identify cores 0,1,2 and 6 as

303



 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 0  5  10  15  20
 0

 2

 4

 6

 8

 10

S
u

p
p

ly
 V

o
lt
a

g
e

 (
V

)

E
rr

o
r 

R
a

te
 (

e
rr

o
rs

/m
in

u
te

)

Time (minutes)

Error rate Core-pair Voltage Margin Voltage

Figure 10: Dynamic adaptation of Vdd for a core pair run-
ning the stress test workload with aggressive speculation.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

core0 core1 core2 core3 core4 core5 core6 core7

S
u

p
p

ly
 V

o
lt
a

g
e

 (
V

)

Processor A Processor B

Figure 11: Average supply voltage for all cores of processors
A and B, across all benchmark sets.

aggressive and 3,4,5 and 7 as conservative.
Not all applications benefit equally from running on ag-

gressive cores. Figure 12 shows the average supply volt-
age for each core and each benchmark set while running
on processor A. SPECjbb benefits most from running on
the aggressive cores 1,2 and 3, achieving lower average Vdds
than SPECint and SPECfp. This is because SPECjbb ex-
ercises execution paths that trigger the constant stream of
correctable errors necessary for aggressive mode speculation.
We do not see the same benefit on core 6, even though it
is aggressive. This is because core 6 has a relatively small
window for further voltage speculation below the margin.
Many of the SPECint and SPECfp applications do not ex-
ercise paths that trigger a sufficient stream of correctable
errors. As a result, they do not see the same Vdd reduction
as SPECjbb even when running on aggressive cores.

Conservative cores see less dynamic adaptation across ap-
plications, spending most of their execution time at the mar-
gin voltage. Their Vdd is only changed when they encounter
a correctable error, which is a rare event at the margin volt-
age in all benchmarks.

The large reduction in average Vdd for all cores results
in significant power savings for the processor. Figure 13
shows the average power consumption (geometric mean) for
each benchmark suite, relative to the power consumed while
running at the nominal Vdd of 1.1V. Overall, power con-
sumption of the core-only section of the processor is reduced
by an average of 22% for SPECjbb, 23% for SPECint and
18% for SPECfp. The so-called “uncore” section of the chip,
which in the Itanium includes the L3 cache and memory con-
trollers, cannot be voltage-scaled in this system. Therefore,
the uncore fraction of the total chip power consumption is
constant in both the nominal and margin cases. As a re-
sult, the chip-wide power savings, which include both the
core and the uncore sections, are slightly lower at 14% for
SPECjbb, 15% for SPECint and 11% for SPECfp.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

core0 core1 core2 core3 core4 core5 core6 core7

S
u

p
p

ly
 V

o
lt
a

g
e

 (
V

)

SPECjbb SPECint SPECfp

Figure 12: Average supply voltage for each core and each
benchmark set while running on Processor A.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Specjbb2005 SPECint SPECfp

R
e

la
ti
v
e

 P
o

w
e

r

Cores-only CPU Total

Figure 13: Average power consumption with voltage specu-
lation relative to nominal Vdd for the cores-only fraction of
the chip and for the entire CPU.

6.4 Runtime Overhead and Energy
There are two sources of runtime overhead in our system:

the cost of handling correctable error events raised by the
hardware and the cost of periodically running the voltage
speculation algorithms.

The current version of our prototype implementation was
mainly geared towards collecting profiling information for
the purposes of this study. It was not optimized for low over-
head. We approximated the cost of running the Error Moni-
tor and Voltage Speculation Governor handler code at about
260 ms. We traced the majority of the cost to be concen-
trated in displaying live events of correctable errors as they
occur. Sending events over I/O for display and performing
the necessary handshaking between System Firmware and
the hardware consumes several milliseconds. This overhead
can be significantly reduced in a production implementation
by eliminating some of the logging support and optimizing
the code.

Figure 14 shows the performance overhead of the voltage
speculation system for each core and each set of benchmarks.
The performance overhead is relative to the baseline system
without voltage speculation. Even with the unoptimized
prototype implementation, the overall impact of this over-
head is minimal, averaging at less than 1% across all cores
and all benchmarks. The overhead is slightly higher at 3-4%
for the aggressive cores (0,1 and 2) when running SPECjbb.
The increased overhead is due to the cost of handling cor-
rectable errors which are more numerous in SPECjbb. SPECint
and SPECfp applications are generally treated more conser-
vatively by the Voltage Speculation Governor. This is be-
cause they tend to not exercise execution paths that trigger
a sufficient rate of correctable errors to make them good
candidates for aggressive speculation.

304



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

core 0 core 1 core 2 core 3 core 4 core 5 core 6 core 7

R
e

la
ti
v
e

 R
u

n
ti
m

e
SPECjbb
SPECint

SPECfp
Nominal Vdd

Figure 14: Performance overhead of the voltage speculation
governor.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
 0

 10

 20

 30

 40

 50

 60

R
e

la
ti
v
e

 E
n

e
rg

y

E
rr

o
rs

 p
e

r 
m

in
u

te
Supply Voltage

Relative Energy Error rate

Figure 15: Core energy as a function of supply voltage and
the number of correctable errors while running gcc.

6.5 Energy vs. Supply Voltage Sensitivity
In order to better understand the impact of the correctable

error rate of an application on runtime and energy, we con-
ducted a sensitivity study that swept multiple Vdd levels
and recorded error rates and energy. Figure 15 shows the
results from running gcc from SPECint on core 0 with the
Vdd swept from 1V to 0.96V. The energy values are relative
to the same benchmark running at the nominal Vdd. The
correctable error rate is also shown for each Vdd level.

Between 1V and 0.985V, the benchmark completes with-
out triggering any correctable errors. As a result, the energy
decreases since the power consumption decreases at each
step. Beyond 0.98V the benchmark triggers correctable er-
rors and their number increases rapidly with lower voltages.
The overhead of handling these errors also goes up, leading
to an increase in runtime and energy even though power con-
sumption continues to decrease. The minimum energy point
is 0.98V which corresponds to an error rate of roughly one
error per minute. We use this error rate as a target for the
voltage speculation algorithm used by the aggressive cores.

Figure 16 shows the same experiment for the stress test
application. This application is designed to stress the sys-
tem and it therefore triggers a larger number of correctable
errors at the same voltages: at 0.98V we see 23 correctable
errors vs. just 1 for gcc. For the stress test application,
the optimal energy point is 0.995V which corresponds to a
region of operation that triggers no correctable errors.

6.6 Voltage Speculation at Lower Frequencies
We expect the voltage speculation system we developed to

scale well to frequencies that are lower than the nominal sys-
tem frequency. Our system can be used in combination with
a dynamic frequency scaling solution to match the optimal
supply voltage to the desired frequency. Figure 17 shows
the potential for voltage margin reductions on Processor B
running at 2.13Ghz compared to the nominal frequency of

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0.97 0.975 0.98 0.985 0.99 0.995 1
 0

 20

 40

 60

 80

 100

 120

R
e

la
ti
v
e

 E
n

e
rg

y

E
rr

o
rs

 p
e

r 
m

in
u

te

Supply Voltage

Relative Energy Error rate

Figure 16: Core energy as a function of supply voltage and
the number of correctable errors while running the stress
test application.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

core0 core1 core2 core3 core4 core5 core6 core7

S
u

p
p

ly
 V

o
lt
a

g
e

 (
V

)

Nominal Vdd 2.53GHz CPU 2.13GHz CPU

Figure 17: Lowest safe supply voltage for each core of Pro-
cessor B at two different frequencies: 2.53GHz and 2.13GHZ.

2.53GHz. We can see that roughly the same variation pat-
tern applies at both frequencies. The average voltage at
2.13GHz is 0.931V, which is 33mV lower than the average
margin voltage at the nominal frequency. This shows signifi-
cant potential for further power savings at lower frequencies
through a combination of dynamic frequency scaling and
voltage speculation.

6.7 Voltage Speculation Robustness
We conducted dozens of hours of testing of the voltage

speculation algorithm presented in this paper. The algo-
rithm ran reliably and consistently under multiple workloads
and multiple load levels from single-core workloads to a fully-
loaded system. One of the stress experiments we conducted
ran the stress test application continuously for 24 hours on
core-pair 0, which includes cores 0 and 1 of processor A. The
voltage and error trace is shown in Figure 18. Supply volt-
age varies between 0.975V and 1.005V over this run, which
means that the cores run both below and above the margin
Vdd of 0.99V.

Additional experiments were conducted under elevated
temperature conditions by slowing down the speed of the
server fans. There was no observable difference in error rates
or system behavior. All tests completed successfully.

7. RELATED WORK
Dynamic Margins Reduction. Reducing voltage and
timing margins at runtime has been explored in multiple
bodies of work. Well-known techniques such as Razor [5]
use shadow latches on a delayed clock to catch timing viola-
tions. This allows the system to reduce voltage aggressively
to save power. Techniques like Paceline [6] use checker cores,
similar to those proposed by Austin [29], to reduce timing
margins and improve performance. Other dynamic solutions
for voltage adaptation include EVAL [25], which uses on-line

305



 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0  5  10  15  20  24
 0

 2

 4

 6

 8

 10

S
u
p
p
ly

 V
o
lt
a
g
e
 (

V
)

E
rr

o
r 

R
a
te

 (
p
e
r 

m
in

u
te

)

Time (hours)

Error rate Core Voltage Margin Voltage

Figure 18: Trace of Vdd and error rate for a 24 hour run of the stress test application on a core-pair.

adaptation of supply voltage and body bias, controlled by
a machine learning algorithm. EVAL is targeted at tim-
ing errors and improving performance in the face of process
variation. More recently, Lefurgy et al. [15] developed a
solution for lowering voltage margins in IBM Power 7 pro-
cessors. Their solution uses critical path monitors built into
the chip to detect when margins are about to be exceeded.
This paper presents a solution that relies on resiliency mech-
anisms already built into the processor and does not require
additional hardware support.
Error Correcting Codes. As transistors reach low nanome-
ter scales, they become increasingly susceptible to a number
of reliability issues. Such issues range from soft errors caused
by cosmic radiation to permanent faults caused by prema-
ture aging or variability in the manufacturing process. To
counter these effects, microprocessor designers are deploying
significant error detection and correction capabilities in the
most vulnerable components of the chip. Modern processors
use various forms of hardware error correction [1, 4, 8, 17,
19, 21, 24]. A large body of research work on novel types
of ECC designed to protect vulnerable memory structures
exists [2, 14, 18, 26, 30, 31]. The expected decrease in re-
liability of future CMOS generations will most likely lead
to an increase in ECC coverage on-chip. This will translate
into better coverage of approaching timing margin violations
as a result of voltage or frequency speculation. Our work
leverages these ECC techniques and benefits from increased
on-chip resiliency support.
Process Variation. Several researchers have proposed mi-
croarchitectural techniques to mitigate or tolerate parameter
variation. They target register file and execution units [16],
data caches [20], pipeline balancing [28], intelligent floor-
planning [7] and core-to-core variation in power [3]. Other
work proposed variation-aware thread scheduling [27] to ex-
ploit core-to-core variability. In this work, we character-
ize variation effects using measurements performed on real
hardware. In addition, our voltage speculation algorithms
adapt to the variation properties of individual cores by clas-
sifying them as conservative or aggressive and by tailoring
the Vdd to each core’s voltage sensitivity.

8. CONCLUSION AND FUTURE WORK
This paper presented a novel technique for voltage specu-

lation that relies on on-chip correctable errors as a proxy for
estimating timing margins. The solution was implemented
in System Firmware and prototyped on an Intel Itanium-
based server. Evaluation of the prototype with a range
of benchmark applications showed significant power savings
ranging from 18% to 23%, with minimal performance im-

pact. The paper also characterized the impact of process
variation on core-to-core distribution of timing margins us-
ing measurements on Itanium II processors. This study re-
vealed significant core-to-core variability in voltage margins.
It also revealed significant heterogeneity in the number and
types of correctable errors that are triggered by identical
applications running on design-identical cores.

We hope this work will open new avenues for research on
voltage speculation using on-chip ECC. We plan to extend
this study to other high performance processors that have
strong on-chip error correction, such as the Intel Core i7.
We would like to also explore other sources of dynamic vari-
ability, such as temperature. A preliminary experiment con-
ducted on our platform revealed that temperature variations
within 10◦C do not cause measurable changes in correctable
error rates. This was an unexpected result that we plan to
investigate further, perhaps by forcing higher temperature
variations.

9. ACKNOWLEDGMENTS
The authors would like to thank the anonymous ISCA re-

viewers for valuable insights and feedback on this work. We
would also like to thank Xiang Pan, Naser Sedaghati and
Renji Thomas from the Computer Architecture Research
Lab at OSU for feedback on the camera ready. Special
thanks to HP for providing equipment support for this re-
search.

10. REFERENCES
[1] H. Ando, K. Seki, S. Sakashita, M. Aihara, Kan, and

K. Imada. Accelerated testing of a 90nm SPARC64 V
microprocessor for neutron SER. IEEE Workshop on
Silicon Errors in Logic - System Effects (SELSE),
2007.

[2] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu,
and S.-L. Lu. Improving cache lifetime reliability at
ultra-low voltages. In International Symposium on
Microarchitecture (MICRO), December 2009.

[3] J. Donald and M. Martonosi. Power efficiency for
variation-tolerant multicore processors. In
International Symposium on Low Power Electronics
and Design (ISLPED), pages 304–309, October 2006.

[4] J. Dorsey, S. Searles, M. Ciraula, S. Johnson,
N. Bujanos, D. Wu, M. Braganza, S. Meyers, E. Fang,
and R. Kumar. An integrated quad-core Opteron
processor. In International Solid-State Circuits
Conference (ISSCC), pages 102–103, February 2007.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao,
T. Pham, C. Ziesler, D. Blaauw, T. Austin,

306



K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In
International Symposium on Microarchitecture
(MICRO), pages 7–18, December 2003.

[6] B. Greskamp and J. Torrellas. Paceline: Improving
single-thread performance in nanoscale CMPs through
core overclocking. In International Conference on
Parallel Architectures and Compilation Techniques
(PACT), pages 213–224, September 2007.

[7] E. Humenay, D. Tarjan, and K. Skadron. The impact
of systematic process variations on symmetrical
performance in chip multi-processors. In Design
Automation and Test in Europe (DATE), April 2007.

[8] Intel CoreTM i7 Processor. http://www.intel.com.

[9] Intel Itanium architecture software developer’s
manual, 2010, revision 2.3.

[10] Intel Itanium processor 9500 series reference manual,
2012, revision 0.2.

[11] Intel Itanium processor 9560 (32M cache, 2.53 GHz).
http://ark.intel.com/products/71699/

Intel-Itanium-Processor-9560-32M-Cache-2_

53-GHz.

[12] Intel Itanium processor family system abstraction
layer specification, 2008, revision 3.3.

[13] N. James, P. Restle, J. Friedrich, B. Huott, and
B. McCredie. Comparison of split-versus
connected-core supplies in the POWER6
microprocessor. In International Solid-State Circuits
Conference (ISSCC), pages 298–604, February 2007.

[14] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and
J. Hoe. Multi-bit error tolerant caches using
two-dimensional error coding. In International
Symposium on Microarchitecture (MICRO), pages
197–209, December 2007.

[15] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S.
Allen-Ware, B. Brock, J. A. Tierno, and J. B. Carter.
Active management of timing guardband to save
energy in POWER7. In International Symposium on
Microarchitecture (MICRO), pages 1–11, December
2011.

[16] X. Liang and D. Brooks. Mitigating the impact of
process variations on processor register files and
execution units. In International Symposium on
Microarchitecture (MICRO), pages 504–514. IEEE
Computer Society, December 2006.

[17] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski,
M. Millican, W. H. Parks, and S. Naffziger. Power and
temperature control on a 90-nm Itanium family
processor. IEEE Journal of Solid-State Circuits,
41(1):229–237, January 2006.

[18] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and
R. Teodorescu. Parichute: Generalized
turbocode-based error correction for near-threshold
caches. In International Symposium on
Microarchitecture (MICRO), pages 351–362, December
2010.

[19] J. Mitchell, D. Henderson, and G. Ahrens. IBM
POWER5 processor-based servers: A highly available
design for business-critical applications. IBM
Technical Report, 2006.

[20] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and
H. Zhou. Yield-aware cache architectures. In

International Symposium on Microarchitecture
(MICRO), December 2006.

[21] N. Quach. High availability and reliability in the
Itanium processor. IEEE Micro, 20(5):61–69, 2000.

[22] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D.
Smith, G.-Y. Wei, and D. Brooks. Voltage smoothing:
Characterizing and mitigating voltage noise in
production processors via software-guided thread
scheduling. In International Symposium on
Microarchitecture (MICRO), pages 77–88, December
2010.

[23] R. Riedlinger, R. Arnold, L. Biro, B. Bowhill, J. Crop,
K. Duda, E. Fetzer, E. Fetzer, O. Franza,
T. Grutkowski, C. Little, C. Morganti, G. Moyer,
A. Munch, M. Nagarajan, C. Parks, C. Poirier,
B. Repasky, E. Roytman, T. Singh, and M. Stefaniw.
A 32nm 3.1 billion transistor 12-wide-issue Itanium
processor for mission-critical servers. IEEE Journal of
Solid-State Circuits, 47(1):177–193, 2012.

[24] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill,
E. Fetzer, P. Gronowski, and T. Grutkowski. A 32nm
3.1 billion transistor 12-wide-issue Itanium processor
for mission-critical servers. In International Solid-State
Circuits Conference (ISSCC), pages 84–86, February
2011.

[25] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas.
Eval: Utilizing processors with variation-induced
timing errors. pages 423–434, November 2008.

[26] H. Sun, N. Zheng, and T. Zhang. Realization of L2
cache defect tolerance using multi-bit ECC. In Defect
and Fault Tolerance of VLSI Systems, pages 254–262,
October 2008.

[27] R. Teodorescu and J. Torrellas. Variation-aware
application scheduling and power management for
chip multiprocessors. In International Symposium on
Computer Architecture (ISCA), pages 363–374, June
2008.

[28] A. Tiwari, S. R. Sarangi, and J. Torrellas. ReCycle:
Pipeline adaptation to tolerate process variation. In
International Symposium on Computer Architecture
(ISCA), June 2007.

[29] C. Weaver and T. Austin. A fault tolerant approach to
microprocessor design. In International Conference on
Dependable Systems and Networks (DSN), pages
411–420, July 2001.

[30] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu,
D. Somasekhar, and S.-L. Lu. Reducing cache power
with low-cost, multi-bit error-correcting codes. In
International Symposium on Computer Architecture
(ISCA), 2010.

[31] D. Yoon and M. Erez. Memory mapped ECC:
Low-cost error protection for last level caches. ACM
SIGARCH Computer Architecture News,
37(3):116–127, 2009.

307


	Introduction
	Motivation
	ECC-based Voltage Speculation
	Margin Voltage Discovery
	Aggressive vs. Conservative Cores
	Dynamic Voltage Speculation
	Conservative Speculation
	Aggressive Speculation
	Speculation in Core Clusters


	Prototype Implementation
	Error Monitor for Margin Detection
	Voltage Speculation Governor

	Evaluation Methodology
	System Architecture
	Experimental Framework
	Benchmarks

	Evaluation
	Process Variation Effects
	Dynamic Adaptation to Workload
	Power Savings
	Runtime Overhead and Energy
	Energy vs. Supply Voltage Sensitivity
	Voltage Speculation at Lower Frequencies
	Voltage Speculation Robustness

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References



