
Using ECC Feedback to Guide Voltage Speculation in Low-Voltage Processors

Anys Bacha

Computer Science and Engineering
The Ohio State University
bacha@cse.ohio-state.edu

Radu Teodorescu

Computer Science and Engineering
The Ohio State University

teodores@cse.ohio-state.edu

Abstract—Low-voltage computing is emerging as a promis-
ing energy-efficient solution to power-constrained environ-
ments. Unfortunately, low-voltage operation presents significant
reliability challenges, including increased sensitivity to static
and dynamic variability. To prevent errors, safety guardbands
can be added to the supply voltage. While these guardbands
are feasible at higher supply voltages, they are prohibitively
expensive at low voltages, to the point of negating most
of the energy savings. Voltage speculation techniques have
been proposed to dynamically reduce voltage margins. Most
require additional hardware to be added to the chip to correct
or prevent timing errors caused by excessively aggressive
speculation.

This paper presents a mechanism for safely guiding voltage
speculation using direct feedback from ECC-protected cache
lines. We conduct extensive testing of an Intel Itanium proces-
sor running at low voltages. We find that as voltage margins
are reduced, certain ECC-protected cache lines consistently
exhibit correctable errors. We propose a hardware mechanism
for continuously probing these cache lines to fine tune supply
voltage at core granularity within a chip. Moreover, we
demonstrate that this mechanism is sufficiently sensitive to
detect and adapt to voltage noise caused by fluctuations in
chip activity. We evaluate a proof-of-concept implementation
of this mechanism in an Itanium-based server. We show that
this solution lowers supply voltage by 18% on average, reducing
power consumption by an average of 33% while running a mix
of benchmark applications.

I. INTRODUCTION

Handheld computers (such as smartphones and tablets)

represent the fastest growing segment of the computing

industry. These systems are also increasingly power con-

strained by demands for high performance coupled with

expectations of long battery life. In this context, low-voltage

operation is emerging as a promising energy-efficient so-

lution for the microprocessors powering these systems [6],

[10], [21].

Unfortunately, chips operating at low voltages face a host

of challenges, including decreased reliability and higher

sensitivity to parameter variation (process, temperature, volt-

age noise, etc.). The most common approach for dealing

with these issues at nominal voltages is to add conservative

This work was supported in part by HP, the National Science Foundation
under grants CCF-1117799 and CCF-1253933, and the Defense Advanced
Research Projects Agency under the PERFECT (DARPA-BAA-12-24)
program.

guardbands to the supply voltage (Vdd) of the chip. In

other words, the chip will run at a higher voltage and/or

lower frequency than necessary in order to prevent timing

errors and other failures that only occur under worst-case

operating conditions. While these guardbands are feasible

(albeit inefficient) at nominal voltages, they are prohibitively

expensive at low voltages. A typical guardband of 100mV

(or 10% of the nominal Vdd) represents almost 20% of the

Vdd of a low-voltage chip running at 500mV. Employing

such high guardbands can negate most of the energy benefits

of low-voltage chips.

Previous work has proposed voltage speculation tech-

niques that dynamically reduce voltage margins at runtime.

The idea is to gradually lower supply voltage while keeping

the processor frequency constant, saving power without

impacting performance. These solutions either detect and

recover from timing errors, as in Razor [12], or avoid errors

altogether with the help of timing monitoring circuits as

in work by Lefurgy et al. [20]. These approaches rely on

dedicated hardware for error detection or avoidance.

In previous work [4], we presented a firmware-based

voltage speculation solution that leverages feedback from

on-chip error correcting code (ECC) hardware to safely

adjust the supply voltage. When correctable errors are re-

ported by the ECC logic, the voltage is raised to a safe

level. The key observation made in the aforementioned work

– based on experiments on real hardware – is that these

benign ECC events are always triggered before actual errors

occur. The system reduces Vdd by 10%, on average, saving

substantial amounts of power. However, the system relies

on the actual workload to exercise sensitive cache lines that

trigger correctable errors. As a result, the system is overly

conservative, with most cores running at safe voltage levels

determined during off-line calibration. In addition, because

the system is based in firmware, it incurs a runtime overhead

for each handled error. This leads to diminishing energy

savings as the voltage is pushed lower and more correctable

errors are triggered.

This paper presents a new ECC-based voltage speculation

system that uses simple hardware support that directly

targets sensitive cache lines to accurately and continuously

monitor timing margins. The system is designed to take

advantage of chip characteristics that are specific to low-Vdd

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.54

306

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

operation. We used an Intel Itanium processor (similar to the

one examined in [4]) to characterize the voltage margins of

the chip at low voltages (around 600mV). We compared the

chip’s characteristics at low voltage with those exhibited at

the processor’s nominal Vdd of 1.1V.
We find that instruction and data caches are the most

sensitive structures at low voltages. These structures always

trigger correctable errors first as the supply voltage is low-

ered while keeping the frequency constant. Moreover, these

correctable errors are encountered consistently in the same

cache lines; although the addresses of such lines vary from

core to core. In addition, we find that the spread between the

Vdd at which a sensitive line reports an error and the voltage

at which the system crashes is almost 4× larger at low Vdd

compared to that at the nominal Vdd. This gives every single

core in the system we tested a wide spread of safe operating

voltages below the Vdd that triggers the first correctable

error. It allows the system much more aggressive speculation

than is possible in the nominal Vdd region. Overall, we find

that correctable errors are more reliable and more consistent

predictors for timing margins at low Vdd compared to the

high Vdd region.
We also find significant variability in the minimum Vdd

that can be reached by individual cores, likely due to the

impact of manufacturing process variation on circuit delay.

This variability is about 4× higher than at nominal Vdd,

making core-level voltage tuning solutions more attractive

at low-Vdd.
We evaluate our voltage speculation solution on a real

hardware platform that uses Intel Itanium 9560 processors.

We simulate some of the hardware-based components in

software running on a dedicated thread. We conduct dozens

of hours of testing of multiple chips and cores and found

our speculation system to operate reliably and without data

corruption. Moreover, we demonstrate that this mechanism

is sufficiently sensitive to detect and adapt to voltage noise

caused by fluctuations in chip activity. We find that our

solution lowers Vdd by 18% on average while running appli-

cations from CoreMark, SPECjbb2005, and SPEC CPU2000

benchmark sets. This reduces power consumption by an

average of 33% with no performance impact.
Overall, this paper makes the following contributions:

• Characterizes the low-voltage behavior of a production

microprocessor and demonstrates the amplified process

variation effects on memory devices.

• Presents a new, more reliable, precise, and aggressive

ECC-based voltage speculation solution specifically de-

signed to take advantage of low-voltage characteristics.

• Shows that the technique is sufficiently sensitive to

detect and adapt to voltage noise caused by processor

activity changes.

• Evaluates the proposed solution on a real hardware

platform based on Intel’s Itanium 9560 processors.

The rest of this paper is organized as follows: Section II

analyzes the voltage speculation potential at low voltages.

Section III details the architecture of the proposed ECC-

based voltage speculation system. Sections IV and V present

the methodology and experimental evaluation. Section VI

details related work; and Section VII concludes.

II. VOLTAGE SPECULATION POTENTIAL AT LOW-VDD

Caches are generally the most vulnerable structures to

low-Vdd operation [1], [5], [26], [27], [37]. They are op-

timized for density and therefore use the smallest transistors

available in a given technology node. These transistors are

the most affected by random variations such as dopant den-

sity fluctuations, leading to imbalance between the SRAM

cell inverters. As the voltage is lowered, these cells may

fail to reliably store data. Low-voltage operation coupled

with variation can also slow down access transistors in the

SRAM arrays. As a result, data reads may not complete in

the expected timeframe, leading to timing and other errors.

While many improvements and optimizations have made

SRAM cells more robust to low-voltage operation, caches

generally determine the supply voltage floor at which chips

can operate reliably [2], [8], [11], [34], [35] (also known

as Vccmin). Our study adds empirical evidence from experi-

ments on production processors to support this conclusion.

To help motivate this work, we explore the limits of

speculation in low-Vdd processors, as well as the potential for

using correctable errors to dynamically choose safe voltage

levels. We begin by examining the voltage margins available

for speculation when running a production microprocessor

at low Vdd.

A. Voltage Margins

For this study, we use a system with an Intel Itanium

II 9560 8-core processor [29]. More details about the ex-

perimental setup are presented in Section IV. We conduct

two sets of experiments. In the first, we set the frequency

and Vdd at the nominal level of 2.53GHz. In the second,

we set the processor frequency to 340MHz, the lowest

supported, in order to test the limits of this system. A

production low-voltage system would likely run at higher

frequencies (500MHz-1GHz) in order to keep performance

at reasonable levels. In both experiments, we gradually lower

supply voltage while keeping the frequency fixed and the

system under load. We run a stress test application consisting

of CPU-intensive kernels, as well as cache and memory-

intensive kernels. For each core we record the lowest Vdd

at which it functions correctly with no crashes or data

corruption.

Figure 1 shows the minimum safe voltage of each core

for both 2.53GHz and 340MHz relative to their respective

nominal Vdds. At high frequency, the average minimum safe

voltage is more than 10% below the chip’s high-Vdd nominal

of 1.1V. This is a typical guardband in CPUs today. At

340MHz, the lowest safe Vdd ranges from 600 to 660mV

307

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

R
el

at
iv

e
S

u
p
p

ly
 V

o
lt

ag
e

2.53 GHz Safe/Min Vdd 340 MHz Safe/Min Vdd

Figure 1. Lowest safe Vdd for each core of an Itanium CMP at both high
and low frequencies.

Core0
Core1
Core2
Core3
Core4
Core5
Core6
Core7

 0.6 0.7 0.8 0.9 1 1.1

Supply Voltage (V)

2.53 GHz Error Free Range 340 MHz Error Free Range
2.53 GHz Corr. Error Range 340 MHz Corr. Error Range

Figure 2. Voltage speculation range for each core at high and low
frequencies.

with an average of 618 mV. This is 23% lower than the

low-Vdd nominal of 810mV. This indicates that voltage

speculation at low-Vdd has the potential to double the energy

savings obtained at high-Vdd.

The data also shows core-to-core variation in the min-

imum safe voltage increases at low-Vdd, exceeding 10%.

This is due to process variation and suggests that core-level

voltage speculation is potentially beneficial at low Vdd.

B. Correctable Error Range

We also find that, as Vdd approaches the lowest safe level,

the hardware reports correctable error events that occur in

the chip’s caches. Figure 2 illustrates the voltage speculation

ranges for both the high and low Vdd cases. The solid lines

represent voltage ranges over which the cores exhibit no

correctable errors. The bars to the right of the solid lines

mark the voltage ranges over which correctable errors occur.

The bars stop at the lowest safe Vdd.

The figure shows that in addition to the voltage specula-

tion margin being much larger at low-Vdd, the range of volt-

ages over which correctable errors occur is 4× larger at low-

Vdd compared to high-Vdd. This has important implications

for ECC-driven voltage speculation. At nominal Vdd, the

smaller error range limits the aggressiveness of the voltage

speculation. This is because correctable errors are only

raised close to the minimum safe voltage. For this reason,

many of the cores examined in [4] were constrained to run

at voltages that were higher than necessary. At low Vdd, the

voltage speculation system receives earlier feedback about

approaching timing margins. This feedback spans a wider

 0

 50

 100

 150

 200

 250

 300

 350

 400

-20 -40 -60 -80 -100 -120 -140 -160 -180 -200

C
or

re
ct

ab
le

 E
rr

or
s

Speculation Range (mV)

340 MHz 2.53 GHz

Figure 3. Average correctable errors across all cores vs. voltage speculation
range at high and low frequencies.

voltage range, allowing speculation to be more aggressive

and bring Vdd substantially lower. This means that each core

should be able to routinely run in an environment in which

correctable errors occur regularly (region marked by shaded

bars in Figure 2), without affecting the correctness of the

execution.

We also found that the number of correctable errors raised

at low-Vdd is higher than at high-Vdd. Figure 3 shows the

average correctable error rate as a function of Vdd for both

experiments. The X-axis in the figure represents the voltage

distance from the nominal levels of each experiment. The

origin on the X-axis represents the nominal Vdd for both

the high frequency and the low frequency cases. We can

see that for both experiments there is a voltage range that

exceeds 100mV in which no correctable errors are triggered.

If voltage is lowered more than 110mV below nominal,

correctable errors are triggered. As the voltage is lowered

further, some cores reach their minimum safe voltage. At

each voltage level we report the average error rate only

across the cores that are still active at that voltage.

For the high-Vdd case, the error rate peaks at approxi-

mately 35 errors over a 5 minute interval before the last

core reaches its minimum safe voltage. The low-Vdd case

generates many more errors, reaching an average of more

than 350 errors over the same time interval. The average

error rate generally increases as the Vdd is lowered. There

is some noise in the data caused by the inclusion of a

decreasing number of cores in the average as the Vdd is

lowered and cores reach their minimum Vdd.

Although this may appear counterintuitive, the higher

correctable error rate is helpful to the hardware-based ECC-

guided voltage speculation. Raising correctable errors more

frequently and consistently helps provide constant feedback

to the speculation system. This gives the system more precise

guidance about approaching timing margins and makes it

easier to accurately target a certain correctable error rate.

C. Correctable Error Types

We find that the types of errors exhibited at low Vdd differ

from those at nominal Vdd. At high Vdd, a mix of cache and

register file correctable errors are triggered, as reported in

[4]. At low Vdd, we only encounter errors in the instruction

308

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

 0

 50

 100

 150

 200

 250

 300

 350

Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7

C
or

re
ct

ab
le

 E
rr

or
s

Data Cache Errors Instruction Cache Errors

Figure 4. Number and type of correctable errors for each core for a 5
minute run under load.

and data L2 caches. We believe this is due to the different

sizing of the SRAM cells used in the register files vs. caches.

Caches are designed using the smallest cells to increase

density, which makes them relatively more vulnerable to

low-voltage operation. The fact that we never see L1 cache

errors likely indicates that these caches are built using larger,

more robust SRAM cells, or perhaps a different cell design.

Figure 4 shows the breakdown of the number of errors

raised by each core while running the same workload

mix – consisting of both memory and compute intensive

benchmarks – for 5 minutes. The voltage of each core is set

at its lowest safe level. We can see that all the cores exhibit

both instruction and data cache correctable errors (with the

exception of core 5 which only triggers instruction cache

errors). There is also significant core-to-core variability

in the number of errors triggered. This can be explained

primarily by the fact that each cache has sensitive lines

in different locations. Since the test workload will likely

exercise some cache lines more than others, the number of

errors triggered by each core differs substantially.

There is also variability in error counts between instruc-

tion and data caches of each core. This is due to the smaller

miss rate in the instruction L1, resulting in fewer accesses

– and therefore fewer errors – in the instruction L2 cache.

D. Deterministic Error Distribution

An important observation we make while conducting

these experiments is that the correctable errors raised by

the system are deterministic. In other words, at the same

Vdd levels, cores exhibit roughly the same number of errors

in multiple runs of the same workload. Moreover, we find

that in each core errors are raised consistently by the

same cache lines. These lines likely contain cells that are

more vulnerable to low voltage than others due to process

variation. Starting from this observation, we propose a new

approach to guiding voltage speculation that directly targets

these weak lines with the help of simple hardware. Our

system is targeted and precise, enabling safer and more

aggressive voltage speculation.

Vdd domain 3

Vdd domain 2

Vdd domain 1

Core 2

Core 3
D$
I$

D$
I$

Interconnect

LLC

LLC

Core 0

Core 1
D$
I$

D$
I$

Core 6

Core 7
D$
I$

D$
I$

Core 4

Core 5
D$
I$

D$
I$

Vdd domain 0

Vdd domain 4

Voltage
Control

Active ECC Monitors Inactive ECC Monitors

Figure 5. Overview of the voltage speculation system integrated in a chip
multiprocessor with multiple Vdd domains.

III. VOLTAGE SPECULATION GUIDED BY ECC

We developed a voltage speculation mechanism specif-

ically designed to take advantage of chip properties that

are specific to low-voltage operation. The proposed system

takes advantage of the observations that correctable errors

are deterministic; and that at low voltages, the distance

between the first reported correctable error and the failure

Vdd increases substantially. The voltage speculation system

consists of two main components: a lightweight hardware

ECC monitor that continuously probes known vulnerable

cache lines and a voltage control system that uses feedback

from the ECC monitor to guide Vdd adjustments. Figure 5

shows an overview of how the voltage speculation system

would be integrated into a chip multiprocessor.

A. Hardware ECC Monitors

The ECC monitor is a hardware unit designed to contin-

uously probe the most vulnerable cache lines in the system.

The monitor consists of simple logic that generates test bit

patterns and writes them into the designated cache line. A

read request is issued after each write to that line. If the

ECC hardware already built into the system detects a single

bit error, it will correct the error and report the event to

the ECC monitor. The monitor maintains two counters: an

access counter and an error counter. The access counter is

incremented for every read request issued by the monitor to

the cache line under test. The error counter is incremented

every time a correctable error event is triggered by the cache

line under test. The counters are periodically reset. The ratio

between the two counter values represents the correctable

error rate for the line under test. This value will be used to

guide voltage adjustment decisions.

ECC monitors are built into all the data and instruction

cache controllers on the chip, as shown in Figure 5. How-

ever, at runtime, only a fraction of these monitors will be

309

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

activated. Since multiple cores and caches often share a

voltage domain, only the most vulnerable line in that domain

needs to be targeted by direct testing. Therefore, only the

ECC monitor corresponding to that line’s cache needs to be

active; the rest can be shut down. In the case of the system

in Figure 5, four ECC monitors are activated, one for each

Vdd domain that contains cores. Since there is no way of

knowing at design time where the most vulnerable line will

be, we need to provision all cache controllers with ECC

monitors.

B. Voltage Control System

A centralized voltage control system (Figure 5) runs on

the service microcontroller available in many processors

today [15], [29]. The control system periodically reads

the error counters for all active ECC monitors. A voltage

adjustment decision is then made based on the correctable

error rate. For instance, the control system can be set to

maintain the error rate somewhere between a floor and a

ceiling value. When the error rate exceeds the ceiling, the

voltage is raised by some small increment (e.g. 5mV). If

the error rate falls below the floor, the voltage is lowered by

the same increment. The floor and ceiling for the speculation

algorithm can be customized to the sensitivity of the voltage

domain, to account for process variation or other factors.

In our implementation, we set the floor and ceiling for all

voltage domains at 10% and 50% respectively.

An emergency mechanism is also in place in each hard-

ware ECC monitor. When the error rate exceeds an emer-
gency ceiling (for example 80%), an interrupt signal is sent

to the voltage control system which raises the voltage for

the domain by a larger increment to bring the system back

into the targeted error range.

C. System Calibration

A calibration step is necessary to configure the voltage

speculation system. The voltage speculation system is de-

signed to monitor the weakest cache line in each voltage

domain. This is the cache line that triggers correctable errors

at the highest Vdd. This line is identified during a simple

calibration step that can be performed periodically at system

boot time. Calibration involves progressively lowering the

Vdd and performing a cache sweep at each voltage level.

The cache sweep test involves both the data and in-

struction caches. As a mechanism to stress the data cache

during this phase, a set of loads and stores are performed

in cache line sized increments. In the case of the instruction

cache, the stress test is built dynamically. The process is

illustrated in Figure 6. A template of straight line instructions

is flashed in the System Firmware ROM. The template is

sized to match the L1 cache line. During boot, the template

is copied from the ROM and is sequentially replicated

throughout the allocated physical memory. Each template

ends with a conditional branch that determines if execution

���
������	
���
���	���

					����������������������						
					������������������������

����	������

��������	
!����	������"	�""����	

��������	�
!����	������"	�""����	�

��������	#�
!����	������"	�""����	#�

���

$%��	��������	�������	��	�������

���

�&�����	������	��������

		'((�#)	�#)	�**���
		�+,	�-)	.
		!�/	�-)	
		,01)	�#
		,�	�2	��%���

��3�������	
!���	��
������

,01	�#

,01	�#

,01	�# ���

Figure 6. Illustration of the instruction cache sweep process.

must return to the caller or proceed to the next requested

offset. During the instruction cache sweep, the execution

branches to the immediately adjacent template until the

entire cache, including all the ways, have been exercised.

The cache sweep stops when a correctable error is en-

countered. The set and way of associativity of the cache line

that triggered the error is recorded. The corresponding ECC

monitor is activated and programmed to target the newly

designated line. The line is de-configured from the cache

to ensure no data will be stored there. The selected line

will only be used for speculation monitoring and will not

store any actual data. The voltage control system is also

programmed to interrogate the active ECC monitor for that

voltage domain.

D. Managing Aging and Temperature Variation

The voltage speculation system can be recalibrated period-

ically to determine if the error distribution has changed and

a new cache line needs to be designated for monitoring. If

the weakest line has changed due to aging, the ECC monitor

is reprogrammed to target the newly discovered weak line.

This ensures that the system can adapt to aging effects.

To verify if temperature variation can affect the cor-

rectable error distribution we conducted experiments under

different temperatures by slowing system enclosure fan

speeds. For variations of up to 20 ◦C we did not observe

a measurable effect on the rate or distribution of errors.

IV. EVALUATION METHODOLOGY

Evaluation of our system was performed on a hardware

platform, the BL860c-i4 Integrity Server from HP, equipped

with two Intel Itanium 9560 processors, each possessing

eight cores with hyperthreading. The system ran the HP-

UX Operating System. Table I lists additional detailed

information about the evaluation system.

310

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

Processor Itanium II 9560
Cores 8, in-order
Frequency 2.53GHz (high), 340MHz (low)
Nominal Vdd 1.1V (high), 810mV (low)
Register file size 1.38KB int, 1.25KB fp
L1 data cache 4-way 16KB, 1-cycle
L1 instruction cache 4-way 16KB, 1-cycle
L2 data cache 8-way 256KB, 9-cycle
L2 instruction cache 8-way 512KB, 9-cycle
L3 unified 32-way 32MB, 50-cycles
QPI Speed 6.4 GT/s
Max TDP 170 W
Technology 32nm
Voltage domains 6
System HP BL860c-i4 blade
Memory DDR3 32GB
Operating System HP-UX 11i v3

Table I
ARCHITECTURAL AND SYSTEM DETAILS OF THE BL860-I4 INTEGRITY

SERVER AND ITANIUM 9560 PROCESSOR [16], [17].

The low frequency is set to the lowest supported by the

system, 340MHz. Since there is no published “nominal” Vdd

for this frequency, we assumed the same absolute guardband

would be used at both high and low Vdd. We measured the

guardband as the difference between the nominal V dd at

2.53GHz and the voltage at which the first correctable error

is encountered at the same frequency. This was determined to

be 100mV. We added this guardband to the Vdd at which the

first correctable error is encountered at 340MHz. This gave

us a nominal Vdd of 810mV for the low-voltage environment.

A. Experimental Platform

We use a firmware-based framework for modeling our

system on real hardware. A runtime system is implemented

to model both the ECC monitor and the voltage speculation

control. The functionality of the ECC monitor is imple-

mented with the help of cache self-tests that perform targeted

reads and writes to designated lines. In our system, the most

vulnerable lines reside in the L2 instruction and data caches.

The challenge of performing this test in firmware is that

direct access to specific cache ways in the L2 is not possible.

Therefore, we developed a testing routine that bypasses the

L1 to effectively exercise the designated cache line within

the L2.

1) Targeted Cache Line Testing: Figure 7 illustrates the

steps involved in the targeted testing of a specific cache line.

In the first step, a total of eight lines are fetched to populate

each way in the L2 cache, which is 8-way set associative. To

get around the L1 cache preventing accesses from reaching

the L2, we fetch four other cache lines (step 2). These map

to the previously used set in the L1 (the L1 is 4-way set

associative), but map to a different set in the L2. This is

possible since the size of the L2 cache is a multiple of the

L1 cache. Once we clear the entries in the L1 cache, we

��	�����		
���
� ��	�����		����
�

���	�
� ����
��� ����

���� '��� ���� ����

��
	� ��
	� ��
	� ��
	�

��
	
 ��
	� ��
	� ��
	�

���	�
� ����
��� ����

��
	� ��
	� ��
	� ��
	�

���	��

��
	� ��
	� ��
	� ��
	�

��
	
 ��
	� ��
	� ��
	�

���	�

���	�
���� ���� ���� ����

��
	� ��
	� ��
	� ��
	�

���	��

���	�
� ����
��� ����

���� '��� ���� ����

��
	� ��
	� ��
	� ��
	�

��
	
 ��
	� ��
	� ��
	�

���	�
���� ���� ���� ����

��
	� ��
	� ��
	� ��
	�

���	��

���� ���� ���� ����

��
	� ��
	� ��
	� ��
	�

��
	
 ��
	� ��
	� ��
	�

� ����
��� ����

���� '��� ���� ����

��
	� ��
	� ��
	� ��
	�

��
	
 ��
	� ��
	� ��
	�

���� ���� ���� ����

��
	� ��
	� ��
	� ��
	�

��
	
 ��
	� ��
	� ��
	�

��	����	���	�����	�	�����	���� 	
				'��!� "�#�$	�#����$…$	�#����%

��	�&���	���	�����	
	�����	���� 	
				'��!� "�#����$	�#����$…$	�#����%

��	'�!(��	��)� 	��	���	���	����	
					'��� 	�!�(����	���� 		
					'��!� "�#�$	�#����$…$	�#����%

Figure 7. Execution steps for performing a targeted cache line test.

access the original eight cache lines that are still resident in

the L2 cache entry targeted by the self-test (step 3).

2) Implementation of ECC Monitor: To approximate the

behavior of the hardware ECC monitor on a real platform,

we dedicate one of the two hardware threads within each

core for initiating and handling self-test operations that drive

voltage speculation. This required disabling multi-threading

at the OS level for the purpose of this study. To achieve this,

System Firmware claimed ownership of each disabled thread

(Thread 1) within a core, while the OS continued to use the

primary thread (Thread 0) for application scheduling. This is

shown in Figure 8. In most of the experiments we conducted,

the benchmark thread ran on the primary hardware thread

while System Firmware simultaneously ran the self-test and

monitored ECC events on the secondary thread.

3) Service Processor: For the purpose of logging and

reporting experimental data, an entire core was reserved for

System Firmware use. Dedicating a core to handling such

measurements greatly simplified the data collection process.

However, in order to facilitate such retention of hardware

311

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

��

���

��������
����	��
	���
��	

���

�������
����	��
	���
��	�

���	��
��

�
���
��

'����	������

��	�������

�
��

�

	!
���

	
��

��"�

Figure 8. Overview of the ECC Monitor simulation framework.

resources from the OS, additional firmware layers had to

be modified. These layers are: the Advanced Configuration

and Power Interface (ACPI) and the Unified Extensible

Firmware Interface (UEFI). Modifying these layers enabled

the live data collection we needed while the OS was active.

This data included average power, voltage settings, error

rate information, and coordination of voltage speculation

experiments.

4) Data Logging and Collection: Power consumption

information was collected by sampling a set of processor

registers. We collected the power information for each core

pair in addition to the uncore component. We also logged the

temperature information for each core. To keep the logging

overhead manageable for long runs, the aforementioned data

was sampled every 1ms.

Special hooks were developed to record logs of the set and

way of correctable cache errors reported by the hardware.

These were used to characterize the correctable error profile

of each core at multiple voltage levels. Error logs were also

kept while running the voltage speculation algorithm. These

were used to construct time based voltage and error rate

traces.

The processors in this system have multiple power deliv-

ery lines – one for each pair of cores and a separate one

for the “uncore” components, such as the L3 cache and

memory controllers [29]. The supply voltage of each of these

power lines can be independently modulated. Experiments

that examined the sensitivity of each core in response to

low voltage were conducted by exercising a single core at a

time. The auxiliary core that shares a supply line with the

one under evaluation was left idle in a tight spin-loop within

System Firmware. This prevented the OS from reclaiming

the core for background tasks which could skew our results.

This allowed data collection at core granularity even with

core pairs sharing voltage rails.

���	�*���

����	�#+����

���	����

�����
�����	 �

	��

��*����

		
����������	.�				��'

		
����������	��				��'

���

		
����������	.�				���

		
����������	��				���

���
"��	������

�����
��
��	
������

��
����"	�""

����	.

�������	�����

����	

*��������	�	 �	
						�����	4	�'��
	�� 	
 �
						�����!!�
"	
		 *���������������
���������
		 �#�����.�
����������
	 ��������#�
����������	
5		

��*�����	��"�

Figure 9. Overview of the noise experiment setup with the voltage virus
running on the auxiliary core.

B. Inducing Voltage Noise

An important part of the evaluation was to test the

resilience of the proposed voltage speculation system under

voltage noise conditions. To artificially generate noise in

the supply voltage, we exploited the fact that two cores

share a single supply. We use one of the cores to induce

noise through the execution of a carefully calibrated “voltage

virus” in an approach similar to that used by Kim et al. in

[19]. This setup is illustrated in Figure 9.

The “voltage virus” consisted of a loop containing high-

power instructions such as Floating-point Multiply Add

(FMA) interleaved with NOPs at a 50% duty cycle. The

goal was to induce the type of regular activity fluctuation

pattern that has been previously reported to excite the chip’s

resonant frequency and cause large droops in Vdd [14], [19],

[28]. We generated multiple variants of this workload by

varying the number of NOP instructions. This allowed us to

sweep through multiple workload oscillation frequencies to

try to match the chip’s resonance frequency.

The main core of the cluster was used to monitor ECC

events and detect noisy conditions through abrupt increases

in the number of correctable errors.

C. Benchmarks

Multiple benchmark suites were used in the evaluation:

CoreMark, SPECjbb2005, and SPEC CPU2000. CoreMark,

which consists of kernels tailored for mobile processors was

configured to run a full instance of the suite on each core.

SPECjbb2005 was configured in a similar fashion where a

total of 8 warehouses were launched on each core under test.

For SPEC CPU2000, all benchmarks were individually run

on the respective cores within the CMP, with the exception

of wupwise and apsi, which we could not successfully run

on this system. In addition to the aforementioned industry

312

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

Suite Benchmark
CoreMark list processing, matrix manipulation,

state machine, CRC.
SPECjbb2005 8 warehouses
SPECint gzip, vpr, gcc, mcf,crafty, parser,

eon, perbmk, gap, vortex, bzip2, twolf
twolf, swim, mgrid, applu, mesa,

SPECfp galgel, art, equake, facerec,
ammp, art, lucas, fma3d, sixtrack
CPU-intensive (FP and INT) kernels.

Stress test Cache and memory-intensive kernels.
Designed to stress test HP servers.

Table II
APPLICATIONS AND BENCHMARKS USED IN THE EVALUATION.

standard benchmarks, a stress test application consisting

of CPU-intensive kernels, as well as cache and memory-

intensive kernels, was used to characterize the processor’s

voltage margins. Benchmarks were run back-to-back to

ensure context switches are handled correctly by the voltage

speculation algorithm. Table II shows a summary of the

different benchmarks used in the evaluation.

V. EVALUATION

In this section we evaluate the benefits of aggressively

lowering the supply voltage while maintaining safe opera-

tion. We show a significant reduction in voltage that leads

to substantial power savings. We examine the robustness of

the system in adapting to changes in workload intensity,

including those sufficiently severe to lead to voltage noise.

Cache line error rate sensitivity to voltage and graceful

degradation is also shown. We compare the energy savings

to a software-only voltage speculation solution similar to

that in [4].

A. Voltage Reduction and Power Savings

Figure 10 shows the average voltage of each core of one

processor for each of the four benchmark suites we ran.

The baseline reference is the low-voltage nominal Vdd of

810mV, illustrated on the figure as the dotted red line. Our

system lowers Vdd by an average of 18% relative to the

baseline. We observe large core-to-core variability with the

Vdd reduction ranging from 13% to 23% across all the cores.

This is evidence of process variation effects which are more

pronounced at low voltages [11], [23].

There is little variability in the voltage reduction across

the four benchmark sets under evaluation. This is because

our algorithm does not rely on the workload to exercise

sensitive cache lines as in prior work [4]. It instead relies on

targeting the weakest cache lines, making the system more

precise. Significant variability in Vdd does exist over shorter

time intervals and between individual applications as the

workload intensity changes.

The large reduction in supply voltage translates into sub-

stantial power savings. Figure 11 shows an average power

 0

 0.2

 0.4

 0.6

 0.8

 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

S
up

pl
y

V
ol

ta
ge

 (
V

)

CoreMark
SPECjbb

SPECint
SPECfp

Nominal Vdd

Figure 10. Average core voltages achieved through voltage speculation
for each benchmark suite.

 0

 0.2

 0.4

 0.6

 0.8

 1

CoreMark Specjbb2005 SPECint SPECfp

R
el

at
iv

e
P

ow
er

Figure 11. Total power relative to the reference voltage for each benchmark
suite.

savings of 33% across all benchmarks, again with little

variability between the benchmark suites.

B. Dynamic Adaptation to Workload

The voltage speculation system continuously adjusts the

supply voltage to ensure reliable operation. All cores start

running at their nominal voltage. Voltage is then continu-

ously reduced or increased in steps of 5mV until the self-test

reports an error rate between a floor of 10% and a ceiling

of 50%. Figure 12 shows a trace of the supply voltage over

time for parts of two SPECint benchmarks running back to

back: mcf and crafty. The correctable error rate for the same

interval is also shown in the figure.

We can see the system is able to match changing workload

conditions and maintain the error rate within the targeted

range. Note that the figure only shows steady-state error rate

and does not include the brief transients that fall below the

floor or above the ceiling Vdds and trigger voltage changes.

 0.62

 0.625

 0.63

 0.635

 0.64

 0.645

 0.65

 0.655

 0.66

 320 330 340 350 360 370 380 390 400
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

S
up

pl
y

V
ol

ta
ge

 (
V

)

E
rr

or
 R

at
e

Time (seconds)

mcf crafty

Core Voltage Error rate

Figure 12. Dynamic adaptation of supply voltage to runtime conditions
while executing mcf followed by crafty from the SPECint benchmark.

313

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7

P
ro

ba
bi

lit
y

of
 S

in
gl

e
B

it
E

rr
or

Supply Voltage

Core A Core B Core C Core D

Figure 13. The probability of a single bit failure of a cache line for
different cores while running the cache line self-test.

The system adapts well to context switches as the workload

transitions from running mcf to crafty.

C. Cache Line Sensitivity at Low Voltages

Our system relies on the gradual change in the probability

of correctable errors in the cache lines targeted for monitor-

ing. In order to characterize error rate sensitivity to supply

voltage, we selected four cores that exhibited different error

distribution profiles. We then ran the targeted self-test on one

line of each core while progressively lowering Vdd. Figure 13

shows the probability of single bit errors vs. supply voltage

for each of these cores. In general, the onset of errors is

relatively slow. The ramp-up range (going from 0% to 100%

errors) spans between 20mV for core D to over 50mV for

core B. We change Vdd in 5mV increments which gives the

system sufficient resolution to keep the error rate between

the floor and ceiling values.

Figure 13 shows that margins of 10-20mV exist above

the 50% error ceiling we used. This gives the system a

margin for handling abrupt changes in dynamic conditions.

In addition, correct operation continues well beyond the

100% mark before the lowest safe Vdd is reached. This

indicates that there is some potential for tailoring the values

of the floor or ceiling Vdds. We leave such optimizations for

future work.

There is also significant variability between the voltages

at which the 50% ceiling is reached by the different cores

(0.625-0.685V). This highlights the benefits of core-level

voltage assignment and adaptation.

D. Algorithm Robustness and Sensitivity to Voltage Noise

In order to evaluate the robustness of our voltage specu-

lation algorithm, we conducted a series of tests to stress the

stability of the supply voltage. The goal was to examine

how the speculation system adapts to extreme operating

conditions.

1) Robustness to Activity Variation: Abrupt changes in

workload intensity lead to variation in power demand that

can rapidly depress supply voltage and cause errors. In order

to test how our system behaves under such conditions, we

construct a stress kernel designed to induce abrupt changes

in power demand.

 0.675

 0.68

 0.685

 0.69

 0.695

 0.7

 0.705

 0.71

 0.715

 0 200 400 600 800 1000 1200
 0

 0.5

 1

 1.5

 2

S
up

pl
y

V
ol

ta
ge

 (
V

)

E
rr

or
 R

at
e

Time (seconds)

Core Voltage Error rate

(a) Main core idle.

 0.67
 0.675
 0.68

 0.685
 0.69

 0.695
 0.7

 0.705
 0.71

 0.715

 0 200 400 600 800 1000 1200
 0

 0.5

 1

 1.5

 2

S
up

pl
y

V
ol

ta
ge

 (
V

)

E
rr

or
 R

at
e

Time (seconds)

Core Voltage Error rate

(b) Main core running SPECfp.

Figure 14. Dynamic adaptation of Vdd to workload stress induced by the
stress kernel runnning on the auxiliary core.

To conduct this test under realistic conditions, we lever-

aged the fact that in the chip we used, every two cores share

a single Vdd domain. Therefore, we could use one of the

cores in a pair to run the main workload under test and the

sibling core (auxiliary core) to run the stress kernel. This

setup simulates conditions in which the regular workload is

disturbed by additional load on the power supply. To induce

load variation, the stress kernel was scheduled to run for 30

seconds and then abruptly throttled for another 30 seconds

by having System Firmware interrupt the auxiliary core. The

interrupted core would then go into a low-power spin-loop

inside System Firmware for 30 seconds before resuming

execution of the stress kernel.

We conduct two experiments: one in which the main core

is idle and one in which the main core is under load running

the SPECfp suite. Figure 14 shows the Vdd and error rate

over time for these two cases. Both experiments run for 20

minutes with the auxiliary core executing the stress kernel. In

both experiments, we can clearly see the Vdd pattern change

every 30 seconds as the stress kernel is periodically throttled

on the auxiliary core. When the stress kernel is active, the

voltage droops, reducing the timing margin and increasing

the correctable error rate. Our test system detects the change

and raises the Vdd. The voltage is lowered as soon as the

auxiliary core begins to idle, reducing the demand on the

system. Throughout the execution, the algorithm attempts to

reduce Vdd to lower values (as indicated by the short-lived

drops in voltage), but generally maintains the Vdd within

a fairly narrow band for both the heavy-loaded and light-

loaded cases.

314

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

The main difference between the two experiments is that

the average Vdd is lower for the SPECfp run (Figure 14(b))

compared to the idle run (Figure 14(a)). These results show

that our voltage speculation algorithm adapts very well to

changes in workload and stress on the supply voltage and

consistently maintains the error rate within the specified

interval.

2) Robustness to Voltage Noise: To further stress our

system, we designed a “voltage virus” meant to induce

voltage noise on the power distribution network. The virus

consists of high power instructions interleaved with varying

numbers of NOPs as described in Section IV-B. By changing

the NOP count, we are effectively varying the oscillation

frequency of high/low-power phases in the virus workload.

We run the targeted self-test on the main core while

the voltage virus runs on the auxiliary core. We count the

number of errors raised during the self-test. Figure 15 shows

the error count for multiple versions of the voltage virus with

NOP counts ranging from 0 to 20. For each NOP point in

the figure, a total of 5000 accesses to the weak cache line

in the main core were performed.

The data clearly shows a spike in error rate for the runs

between 8 and 11 NOPs, with a large peak at 8 NOPs.

While there is some variability in data obtained in different

runs, we found the 8 NOPs virus to repeatedly exhibit larger

error counts. Note that as the number of NOPs in the virus

increases, its power goes down, putting less pressure on the

power delivery network. As a result, we would expect the

error count to remain constant or decrease with the number

of NOPs. The fact that the error rate spikes for the NOP-8

virus (and is low or zero for lower NOP counts) indicates

that it is very likely oscillating close to the chip’s resonance

frequency [14], [19], [28], which leads to a larger droop and

higher error rate.

We expand the same experiment to examine if the be-

havior is consistent across multiple voltage levels. Figure

16 shows the error rate as a function of Vdd on the main

core for three different workloads running on the auxiliary

core. Aux. Load NOP-8 is the voltage virus with 8 NOPs

(worse case droop in the previous experiment). Aux. Load
NOP-0 is the same virus, but without any NOPs. The third

run is simply leaving the auxiliary core idle (No Aux. Load).

We observe that the NOP-8 case exhibits a higher error rate

relative to both the idle case and the NOP-0 case throughout

the entire voltage range. This is significant because the NOP-

0 virus has higher intensity and power demand than the

NOP-8 virus, so it should normally exhibit a higher error

rate. This is further evidence that that the NOP-8 voltage

virus likely exercises the resonance frequency.

This is an important finding for two reasons: first, it

shows that correctable errors in cache lines are sufficiently

sensitive to capture voltage noise effects, an observation that

as far as we know has not been documented before. Second,

given that our algorithm uses feedback from these lines

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

C
or

re
ct

ab
le

 E
rr

or
s

NOP Count

Correctable Errors vs. NOP Instructions

Figure 15. Cache line sensitivity to voltage noise on the main core while
running a voltage virus on the auxiliary core.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.68 0.682 0.684 0.686 0.688 0.69 0.692 0.694 0.696 0.698 0.7

E
rr

or
 R

at
e

Supply Voltage

Aux. Load NOP-8 Aux. Load NOP-0 No Aux. Load

Figure 16. Error rate comparison of the main core with the auxiliary core
idle or running different voltage viruses.

to control speculation, our system should be robust under

voltage noise. To test this theory, we conducted multiple runs

of benchmarks on the main core with the NOP-8 voltage

virus on the auxiliary core. All tests completed successfully

without crashes or data corruption.

E. Characterizing the Source of Errors at Low-Voltage

A set of experiments were conducted to characterize the

nature of the correctable errors triggered during voltage

speculation. We ran a test to determine if any retention

errors were encountered while self-testing a given cache line.

This was achieved by performing a targeted cache line test

through the following steps. First, we raised Vdd by 80mV

above the nominal voltage of 810mV. Once the voltage

was raised, data was written into the cache line under test.

Writing the data at this high voltage was done to ensure that

write operations would complete without any error. The core

was then spun in a tight loop while Vdd was lowered to a

level that has a 100% probability of triggering a correctable

error. The core continued to spin at this low voltage for one

minute. After that, the voltage was raised to the original

80mV above nominal level and the cache line was read back.

We did not observe any correctable errors after applying the

aforementioned steps even though the same experiment was

repeated multiple times. This indicates that the correctable

errors triggered in our system are not memory retention

errors, but rather timing errors caused by excessive delay in

the memory access logic, or read disturb errors that corrupt

the data upon access.

315

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

CoreMark Specjbb2005 SPECint SPECfp

R
el

at
iv

e
E

ne
rg

y

Software Speculation Hardware Speculation

Figure 17. Energy comparison of the hardware and software speculation
techniques relative to the low-voltage nominal Vdd.

F. Hardware vs. Software Speculation

We conducted a set of experiments to compare the energy

reduction achieved by our hardware-based speculation to

the software-based solution presented in prior work [4]. For

this comparison, we run both techniques at low-Vdd with

the same benchmarks on the same system. Figure 17 shows

the energy reduction for the two techniques relative to the

low-Vdd nominal. We can see that the hardware speculation

achieves lower energy than software-based speculation for

all benchmark sets. While the software technique reduces

energy by 22% on average, the hardware speculation delivers

11% additional energy savings.

There are two primary reasons why the software solution

is less efficient. First, it cannot be as aggressive in lowering

the voltage because it relies on the workload to exercise

weak cache lines. It generally operates at voltage levels at

which few or no correctable errors are triggered. The second

reason for the higher energy is the performance cost of

handling correctable errors in software/firmware rather than

hardware.

In the hardware based design, the main source of per-

formance impact lies in the self-test mechanism. However,

since access to the cache line under test is performed by

the hardware during idle cache cycles, the runtime overhead

is negligible. Cache storage is also largely unaffected since

only a single cache line is disabled for self-test purposes.

The cost of handling correctable errors in software can

also be a significant barrier to more aggressive speculation.

At lower voltages, the energy of the software solution can

start to increase. This is because the performance overhead

goes up rapidly as the number of errors increases. Figure

18 shows the energy of the hardware and software solutions

as a function of supply voltage for one core. The energy

decreases with voltage for both techniques until they reach

670mV. From that point, correctable errors start to occur and

the energy of the two solutions begins to diverge. The energy

of the software speculation starts to increase rapidly as the

error rate ramps up. The energy of the hardware solution

continues to decrease until the minimum safe voltage is

reached.

 0.5

 1

 1.5

 2

 2.5

 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

R
el

at
iv

e
E

ne
rg

y

Supply Voltage (V)

Hardware Speculation Software Speculation

Figure 18. Core energy as a function of Vdd for the hardware and software
speculation techniques relative to the energy at nominal Vdd.

VI. RELATED WORK

The efficiency of very low voltage designs has been

demonstrated in many previous studies [7], [10], [11], [21],

[38]. In addition, several improvements geared towards

enhancing large cache operation in low voltage through

more reliable designs have been proposed [13], [24]. Despite

the significant progress in implementing such work into

production [32], various challenges remain when considering

reliability and high variation.

Runtime reduction of voltage and timing margins has

been explored in multiple bodies of work. For example,

Razor [12], a well-known technique in this space, employs

shadow latches that are running on a delayed clock. Such

latches serve the purpose of detecting and recovering from

timing errors. This enables their system to aggressively

lower voltage. EVAL [30] is another solution that targets

improving performance in the context of process variation.

It dynamically adapts supply voltage and body bias through

machine learning. Other dynamic solutions include the one

proposed by Lefurgy et al. [20]. This work entails reducing

voltage guardbands by inserting critical path monitors into

different units within an IBM POWER7 processor. The

system quickly reduces the clock frequency whenever a

timing violation is approached. Manageability firmware is

then used to adjust the voltage to an appropriate level.

Other work by Wang and Calhoun [33] targets the reduction

of voltage margins during standby. They employ custom

SRAM devices that are designed to prevent data retention

failures through the addition of canary cells. Such cells

are purposely calibrated to fail at higher voltages to avoid

retention failures in the usable SRAM bits.

In previous work [4], we proposed using correctable error

reports from ECC-protected on-chip SRAM structures to

control a firmware-based voltage speculation system running

at nominal Vdd. The mechanism gradually lowers supply

voltage while keeping the processor frequency constant until

correctable errors are reported by the ECC logic. That

system reduces Vdd by 10% on average. However, because

it relies on the actual workload to exercise the sensitive

memory structures the system is overly conservative with

most cores running at safe voltage levels determined during

316

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

off-line calibration. In addition, because the error handler

involves software, it has a high runtime overhead. This

leads to diminishing returns in energy savings if the system

triggers a constant stream of correctable errors.

This paper, on the other hand, presents an ECC-based

voltage speculation system that is more reliable, precise, and

aggressive. Our system is also specifically designed for very

low Vdd operation. In addition, we show that error rates in

cache lines are sufficiently sensitive to respond to voltage

noise effects, an observation that, as far as we know, has

not been made before. Overall, this study provides several

improvements compared to [4], where we show, on average,

an additional 8% in voltage reduction, an additional 12% in

power savings, and no performance impact.

Deployment of error-correcting hardware is widespread

in modern processors [3], [9], [15], [22], [25], [29] mainly

as protection against soft errors. Many novel types of ECC

for protecting memory structures have been proposed by

prior research [8], [18], [24], [31], [34], [36]. The trend

of decrease in the reliability of future CMOS generations

is expected to promote more on-chip ECC coverage as the

process technology continues to shrink. This will make the

deployment of ECC-guided speculation practical to more

types of processors from servers to mobile systems.

VII. CONCLUSION AND FUTURE WORK

This paper presented a new technique for using ECC as

feedback to aggressively reduce guardbands at low voltages.

We show that using targeted self-tests to a single cache

line is sufficient to effectively guide voltage speculation

for multiple cores without compromising safe operation of

the system. Evaluation on real hardware showed significant

power savings of 33% across a wide range of applications.

We hope this work will spark interest in using ECC as

a mechanism for voltage speculation. This study shows that

our ECC feedback is sufficiently sensitive to detect voltage

noise conditions, an observation that could have implications

on other mechanisms to detect and recover from voltage

noise-related issues. We believe this is a promising area for

future exploration. We also show that the speculation range

varies greatly with the operating voltage and frequency. We

would like to explore this variation in speculation range

across additional frequencies and examine how it impacts

energy usage.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their valuable feedback on this work. We would also

like to thank Kristin Barber, Xiang Pan, Naser Sedaghati,

Renji Thomas, and Li Zhou from the Computer Architecture

Research Lab at OSU for their comments on the camera

ready. Special thanks to HP for providing equipment support

for this research.

REFERENCES

[1] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy, “Process
variation in embedded memories: failure analysis and varia-
tion aware architecture,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 9, pp. 1804–1814, September 2005.

[2] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilk-
erson, and S.-L. Lu, “Energy-efficient cache design us-
ing variable-strength error-correcting codes,” in International
Symposium on Computer Architecture (ISCA), June 2011, pp.
461–472.

[3] H. Ando, K. Seki, S. Sakashita, M. Aihara, Kan, and
K. Imada, “Accelerated testing of a 90nm SPARC64 V
microprocessor for neutron SER,” IEEE Workshop on Silicon
Errors in Logic - System Effects (SELSE), 2007.

[4] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage
margins by leveraging on-chip ECC in Itanium II proces-
sors,” in International Symposium on Computer Architecture
(ISCA), June 2013, pp. 297–307.

[5] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-
threshold SRAM design for ultra-low-voltage operation,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 680–
688, 2007.

[6] A. Chandrakasan, D. Daly, D. Finchelstein, J. Kwong, Y. Ra-
madass, M. Sinangil, V. Sze, and N. Verma, “Technologies
for Ultradynamic Voltage Scaling,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 191–214, February 2010.

[7] L. Chang, D. Frank, R. Montoye, S. Koester, B. Ji, P. Coteus,
R. Dennard, and W. Haensch, “Practical strategies for power-
efficient computing technologies,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 215–236, February 2010.

[8] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and
S.-L. Lu, “Improving cache lifetime reliability at ultra-low
voltages,” in International Symposium on Microarchitecture
(MICRO), December 2009, pp. 89–99.

[9] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos,
D. Wu, M. Braganza, S. Meyers, E. Fang, and R. Kumar,
“An integrated quad-core Opteron processor,” in International
Solid-State Circuits Conference (ISSCC), February 2007, pp.
102–103.

[10] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s
Law Through Energy Efficient Integrated Circuits,” Proceed-
ings of the IEEE, vol. 98, no. 2, pp. 253–266, February 2010.

[11] R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw,
D. Sylvester, and K. Flautner, “Reconfigurable energy ef-
ficient near threshold cache architectures,” in International
Symposium on Microarchitecture (MICRO), December 2008,
pp. 459–470.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: A low-power pipeline based on circuit-level timing
speculation,” in International Symposium on Microarchitec-
ture (MICRO), December 2003, pp. 7–18.

317

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

[13] H. R. Ghasemi, S. Draper, and N. S. Kim, “Low-Voltage On-
Chip Cache Architecture Using Heterogeneous Cell Sizes for
High-Performance Processors,” in International Symposium
on High Performance Computer Architecture (HPCA), Febru-
ary 2011, pp. 38–49.

[14] M. S. Gupta, J. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks,
“Understanding voltage variations in chip multiprocessors
using a distributed power-delivery network,” in Design Au-
tomation and Test in Europe (DATE), April 2007, pp. 624–
629.

[15] “Intel CoreTM i7 Processor,” http://www.intel.com.

[16] “Intel Itanium processor 9500 series reference manual, 2012,
revision 0.2,” http://www.intel.com.

[17] “Intel Itanium processor 9560 (32M cache, 2.53 GHz),” http:
//www.intel.com.

[18] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-
bit error tolerant caches using two-dimensional error coding,”
in International Symposium on Microarchitecture (MICRO),
December 2007, pp. 197–209.

[19] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L.
Bircher, and M. S. S. Govindan, “AUDIT: Stress testing the
automatic way,” in International Symposium on Microarchi-
tecture (MICRO), December 2012, pp. 212–223.

[20] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware,
B. Brock, J. A. Tierno, and J. B. Carter, “Active management
of timing guardband to save energy in POWER7,” in Interna-
tional Symposium on Microarchitecture (MICRO), December
2011, pp. 1–11.

[21] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey,
“Ultralow-power design in near-threshold region,” Proceed-
ings of the IEEE, vol. 98, no. 2, pp. 237–252, February 2010.

[22] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Mil-
lican, W. H. Parks, and S. Naffziger, “Power and temperature
control on a 90-nm Itanium family processor,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 1, pp. 229–237, January
2006.

[23] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodor-
escu, “Booster: Reactive core acceleration for mitigating
the effects of process variation and application imbalance
in low-voltage chips,” in International Symposium on High
Performance Computer Architecture (HPCA), February 2012,
pp. 27–38.

[24] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodor-
escu, “Parichute: Generalized turbocode-based error correc-
tion for near-threshold caches,” in International Symposium
on Microarchitecture (MICRO), December 2010, pp. 351–
362.

[25] J. Mitchell, D. Henderson, and G. Ahrens, “IBM POWER5
processor-based servers: A highly available design for
business-critical applications,” IBM Technical Report, 2006.

[26] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical de-

sign and optimization of SRAM cell for yield enhancement,”
in International Conference on Computer-aided Design (IC-
CAD), 2004, pp. 10–13.

[27] Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung,
“Selective wordline voltage boosting for caches to manage
yield under process variations,” in Design Automation Con-
ference (DAC), 2009, pp. 57–62.

[28] M. D. Powell and T. N. Vijaykumar, “Pipeline muffling and
a priori current ramping: architectural techniques to reduce
high-frequency inductive noise,” in International Symposium
on Low Power Electronics and Design (ISLPED), August
2003, pp. 223–228.

[29] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer,
P. Gronowski, and T. Grutkowski, “A 32nm 3.1 billion
transistor 12-wide-issue Itanium processor for mission-critical
servers,” in International Solid-State Circuits Conference
(ISSCC), February 2011, pp. 84–86.

[30] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL:
utilizing processors with variation-induced timing errors,”
in International Symposium on Microarchitecture (MICRO),
November 2008, pp. 423–434.

[31] H. Sun, N. Zheng, and T. Zhang, “Realization of L2 cache
defect tolerance using multi-bit ECC,” in Defect and Fault
Tolerance of VLSI Systems, October 2008, pp. 254–262.

[32] S. Vangal, “A solar powered IA core? No way!”
Research@Intel, September 2011, http://blogs.intel.com/
intellabs/2011/09/15/ntvp/.

[33] J. Wang and B. H. Calhoun, “Canary replica feedback for
near-DRV standby Vdd scaling in a 90nm SRAM,” in Custom
Integrated Circuits Conference, September 2007, pp. 29–32.

[34] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. So-
masekhar, and S.-L. Lu, “Reducing cache power with low-
cost, multi-bit error-correcting codes,” in International Sym-
posium on Computer Architecture (ISCA), 2010, pp. 83–93.

[35] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khel-
lah, and S.-L. Lu, “Trading off cache capacity for reliability
to enable low voltage operation,” in International Symposium
on Computer Architecture (ISCA), June 2008, pp. 203–214.

[36] D. Yoon and M. Erez, “Memory mapped ECC: Low-cost error
protection for last level caches,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 116–127, 2009.

[37] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A Sub-
200mV 6T SRAM in 0.13μm CMOS,” in International Solid-
State Circuits Conference (ISSCC), February 2007, pp. 332–
606.

[38] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and
D. Sylvester, “Energy efficient near-threshold chip multi-
processing,” in International Symposium on Low Power Elec-
tronics and Design (ISLPED), August 2007, pp. 32–37.

318

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 20:18:47 UTC from IEEE Xplore. Restrictions apply.

