
Isolating Speculative Data to Prevent
Transient Execution Attacks

Kristin Barber,Member, IEEE,
Anys Bacha ,Member, IEEE,

Li Zhou ,Member, IEEE,
Yinqian Zhang,Member, IEEE,

and Radu Teodorescu ,Member, IEEE

Abstract—Hardware security has recently re-surfaced as a first-order concern to

the confidentiality protections of computing systems. Meltdown and Spectre

introduced a new class of exploits that leverage transient state as an attack

surface and have revealed fundamental security vulnerabilities of speculative

execution in high-performance processors. These attacks derive benefit from the

fact that programs may speculatively execute instructions outside their legal

control flows. This insight is then utilized for gaining access to restricted data and

exfiltrating it by means of a covert channel. This study presents a

microarchitectural mitigation technique for shielding transient state from covert

channels during speculative execution. Unlike prior work that has focused on

closing individual covert channels used to leak sensitive information, this approach

prevents the use of speculative data by downstream instructions until doing so is

determined to be safe. This prevents transient execution attacks at a cost of 18

percent average performance degradation.

Index Terms—Hardware security, transient execution attacks, covert timing

channels

Ç

1 INTRODUCTION

SPECULATIVE execution has been used for decades to expose
instruction level parallelism and increase performance. Unfortu-
nately, the recent Meltdown and Spectre [1], [2] attacks have
uncovered fundamental security vulnerabilities in how modern
processors implement speculative execution. These attacks can
generally be broken down into two phases.

First, speculation allows applications to execute instructions
that are not part of their legal control flow. When a misprediction
is detected the processor discards any erroneous instructions and
continues execution. However, instructions outside the legal con-
trol flow can retrieve secret data that is otherwise inaccessible to
the application (e.g., data belonging to a privileged process or data
normally protected by the application’s control flow, such as array
boundary checks).

The second phase of these attacks involves using a covert chan-
nel to leak the secret obtained during the first phase. Covert timing
channels consist of a trojan process (transmitter) which inten-
tionally modulates the timing of a shared system resource to illegit-
imately reveal sensitive information to a spy process (receiver). The
trojan and spy do not communicate explicitly, but covertly by
observing the timing of certain events with respect to the shared
resource. Although cache-based covert channels were used in the
Spectre and Meltdown attacks, several other channels are available
to an attacker.

Prior hardware-based mitigation solutions have focused on
closing or removing the viability of specific covert channels, in
most cases the cache [3], [4], [5], [6]. However, as some channels
are closed, new ones are discovered [7], making channel-specific
solutions less effective. Our approach takes the first steps towards
a more general solution.

This study proposes a mechanism for shielding speculative data
that may be obtained during the first phase of the attack from any
possible covert channels. This is accomplished by blocking the use
of speculative data by all dependent instructions until the source
instruction is determined to be safe. This design is more general,
less complex and with a similar performance impact as other exist-
ing hardware solutions.

To the best of our knowledge, this is the first work that has
addressed the root cause of transient execution attacks: namely,
the propagation of speculative data to downstream instructions
that form the transmitter-side of a covert channel.

2 BACKGROUND AND RELATED WORK

A comprehensive summary of known transient execution attacks
and defenses can be found in [8]. We briefly present Spectre-v1
(bounds-check-bypass) as an illustrating example. Listing 1 shows
the code of the transmitter gadget from that attack. An attacker first
trains the branch predictor to ensure a missprediction when
x > lenb. Execution continues down the misspredicted path and a
restricted value is accessed by the memory reference b[x]. Even
though the secret data has been accessed, it will be cleared out of
the architectural state of the system when the missprediction is
identified. Before that happens, however, the secret can be leaked
through a cache side channel.

This is accomplished by using a technique, such as Flush
+Reload [9] or Prime+Probe [10], to set the cached contents of array
a into a known state, where a is a shared resource acting as the
covert channel. The secret accessed by the memory reference b[x]

is then used to access a location in array a that is dependent on the
restricted value, leaving a secret-dependent footprint in the cache.
The attacker probes each cache line containing a and infers the
secret value from the index exhibiting an anomaly in access time
relative to the other indices. In Flush+Reload, the secret data would
correspond to the array index with the lowest access latency.

Multiple hardware defenses against transient execution attacks
have recently been proposed, but each has limitations. Invisispec
[3] proposes introducing shadow structures for caches to remove
the side-effects of speculative execution from observation. DAWG
[5] proposes adding protection domains to caches. Conditional
Speculation [6] protects the data cache from leakage by blocking
memory requests in the issue queue until they are known to not
have been misspeculated. These approaches have only considered
attack variants utilizing the cache as a covert channel, and
have non-trivial complexity because they affect memory consis-
tency and cache coherence. Context-sensitive fencing [11] pro-
vides a mechanism for automatically inserting fences into the
instruction stream when malicious gadgets are dynamically
detected with taint-tracking, requiring non-trivial tracking and
recovery overheads.

Currently, there has been no solution that is covert-channel
agnostic.

Listing 1. C++ Spectre-v1 transmitter gadget.

� K. Barber, L. Zhou, Y. Zhang, and R. Teodorescu are with the CSE Department, The
Ohio State University, Columbus, OH 43210.
E-mail: {barberk, zholi, yinqian, teodores}@cse.ohio-state.edu.

� A. Bacha is with the University of Michigan, Dearborn, MI 48109.
E-mail: bacha@umich.edu.

Manuscript received 11 Mar. 2019; accepted 22 Apr. 2019. Date of publication 14 May
2019; date of current version 13 Jan. 2020.
(Corresponding author: Radu Teodorescu.)
Digital Object Identifier no. 10.1109/LCA.2019.2916328

178 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 2, JULY-DECEMBER 2019

1556-6056� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:26:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6711-1280
https://orcid.org/0000-0001-6711-1280
https://orcid.org/0000-0001-6711-1280
https://orcid.org/0000-0001-6711-1280
https://orcid.org/0000-0001-6711-1280
https://orcid.org/0000-0002-5722-2574
https://orcid.org/0000-0002-5722-2574
https://orcid.org/0000-0002-5722-2574
https://orcid.org/0000-0002-5722-2574
https://orcid.org/0000-0002-5722-2574
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
mailto:barberk@cse.ohio-state.edu
mailto:zholi@cse.ohio-state.edu
mailto:yinqian@cse.ohio-state.edu
mailto:teodores@cse.ohio-state.edu
mailto:bacha@umich.edu

3 THREAT MODEL

In this work we address both Spectre and Meltdown-class transient
execution attacks. We consider attackers targeting secret data resid-
ing in the memory hierarchy, and which may use any micro-
architectural structure as a transmission medium–including caches,
TLBs, FP units, execution ports, etc. Fig. 1 conceptualizes the access
path to secret data (shown in red), as well as the covert channels on
amodern coremicroarchitecture (shown in blue).

Out of the scope of this work are attack scenarios in which
secret data resides in a register that was preloaded through legal
control flow (and non-excepting loads) and subsequently leaked
through a side or covert channel. We also do not consider attacks
targeting privileged registers such as Spectre Variant 3a (Rogue
System Register Read) or registers with stale data that might not
have been sanitized following a context switch such as the LazyFP
attack. These attacks have been addressed through other mecha-
nisms and represent a much smaller attack surface compared to
attacks that can access arbitrary memory locations.

4 MITIGATION DESIGN

Key to our approach is the observation that, by definition, the leak-
age source (covert channel) has a data-dependence on the secret
value, as can be seen in the example in Listing 1. The access into
array a is dependent on the secret value referenced by b[x]. These
two memory references form the transmitter-side of the covert
channel and must both be executed speculatively, before the mis-
speculated instructions are squashed. Therefore, if we can delay
the forwarding of data to dependent instructions until we can con-
firm the producing instruction is no longer speculative, we can
inhibit leakage and restrict the formation of the transmitter. This
effectively removes the ability to construct any covert channel that
can leak this data.

To accomplish this goal we change the timing of when specula-
tive data loaded into the processor’s pipeline can be used by
dependent instructions. Fig. 1 shows a high-level view of how this
integrates into a processor’s pipeline design.

4.1 A Conservative Approach

The most conservative design delays the forwarding of data
returned by a speculative Load instruction until it reaches the head
of the reorder buffer (ROB) and is ready to commit. Fig. 2 illustrates
the ROB for an example with a LD instruction followed by two
dependent instructions (ADD and SUB). Fig. 2a illustrates the cycle
in which the LD receives the requested data from memory. Nor-
mally the value of mem(D) would be forwarded to all dependent
instructions as well as stored in physical register r1.

When the LD data returns, the state of its ROB entry is checked.
If it is not at the head of the ROB, the result of the LD will silently
update the physical register corresponding to r1, but it will not
broadcast the data on the result bus to dependent instructions.
Since the physical register is assigned to r1, it will not be recycled
until the LD instruction retires. Also, the LD will not be marked as
complete, forcing any r1-dependent instructions added to the
ROB after the LD returns to wait.

When the LD is ready to commit, its data is read from the physi-
cal register and broadcast to dependent instructions (Fig. 2b). At
that point the LD is guaranteed to no longer be speculative. This
ensures that no speculative data will be manipulated by any other
instruction that could potentially leak information.

The wakeup/select logic has to be modified to consider all LD
instructions as high (and variable) latency instructions. As a result,
no LD-dependent instructions will be woken up when the LD is dis-
patched. Fig. 3 shows the timing of the typical wakeup/select
stages in the pipeline and the changes made to delay the wakeup
of dependent instructions until the result of the LD is rebroadcast
before retirement.

This approach is straightforward to implement in hardware
requiring minimal changes to existing designs. However, delaying
all instructions dependent on speculative loads by dozens or
potentially hundreds of cycles leads to a significant performance
impact, as will be shown in Section 5.

Fig. 1. Isolating speculative data from covert channels used to leak secret
information.

Fig. 2. The consvative design delays the forwarding of data loaded from memory
location mem(D) into register r1 (a) until the LD instruction is ready to commit (b).

Fig. 3. Baseline design (a) and changes (b) to the timing of the wakeup/select pipe-
line to delay the broadcast of speculative LD results.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 2, JULY-DECEMBER 2019 179

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:26:36 UTC from IEEE Xplore. Restrictions apply.

4.2 Early Resolution of Speculative Instructions

In order to address the performance impact of the previous
approach, we develop a mechanism for early detection of non-
misspeculated loads that allows their results to be forwarded
earlier to dependent instructions. We define an Early Resolution
Point (ERP) in the ROB as the eldest in-flight instruction in pro-
gram order for which the following conditions are satisfied:

1) All older branch instructions (in program order) have been
resolved and their actual direction is known.

2) All older loads and stores have had their address com-
puted, and a TLB translation has been performed.

3) No branch missprediction or memory access exception has
been raised by either of the above instruction types.

As a result of these conditions, all instructions between the head
of the ROB and the ERP can be considered safe or resolved with
respect to their ability to speculatively access data outside their
legal control flow.

Fig. 4 shows two snapshots of the ROB content and the position
of the ERP. In Fig. 4a, the ERP is below the BR<c1> instruction.
This means that all Branch and Load instructions between the ERP
and the ROB head have been resolved and are neither misspecu-
lated nor have they raised an exception. The BR<c1> instruction,
on the other hand, has not been resolved, thus preventing the ERP
from moving upwards.

This enhanced scheme allows the immediate forwarding of
results for all the Load instructions that are older than the ERP
and can therefore be considered safe. The result of the LD r1,

mem(A) instruction can immediately be forwarded to its depen-
dent instructions, which in this example is the ADD instruction.
This allows Load results to be forwarded much earlier than in
the previous approach, which restricts all Loads to wait until
commit. All other Loads that are above the ERP (e.g., LD r2,

mem(B) in Fig. 4) will continue to delay the forwarding of their
results until they reach the ERP.

A new ER status bit associated with each ROB entry indicates
whether the instruction has been early resolved or not. When a Load
returns the ER bit is checked. If it is ”1” the result is immediately
broadcast on the result bus to all dependents. If it is not set, the des-
tination register of the LD is silently updated. A forward pending
(FP) bit is set in that LD’s ROB entry. When the Load is early
resolved the FP bit is checked. If it is set, the result of the Load will
be rebroadcast to dependent instructions.

Even though this scheme is significantly less conservative com-
pared to the previous one, it does not meaningfully relax its secu-
rity properties. Only allowing data loaded by instructions within
the Early Resolution window (highlighted in gray in Fig. 4) to be
forwarded to dependents prevents any speculative data from being
accessed by any other instruction in the pipeline. While it is possi-
ble for the instructions now considered safe (below the ERP) to

experience other types of exceptions or interrupts, prior work has
shown these to be ineffective in facilitating transient execution
attacks [8].

5 EVALUATION

5.1 Methodology

We used the gem5 cycle-level simulator in full-system mode, run-
ning a Linux operating system and modified out-of-order CPU
model to implement the designs. Our simulations were run with
an Ubuntu 14.04 disk image, Linux v4.18.7 kernel and x86 ISA.
Table 1 shows the CPU and cache parameters used. Results pre-
sented are from simulation runs consisting of a 1B instruction
warm-up period, followed by 500M instructions.

Workloads used in the evaluation were selected from the
SPEC2006 benchmark suite to represent a diverse mix of integer
and floating-point applications with both memory and compute-
bound characteristics, using the reference input set.

5.2 Security Analysis

To analyze the effectiveness of both schemes in preventing leakage
through covert channels we simulated proof-of-concept Spectre-v1
code in gem5, similar to the code shown in Listing 1. Flush+Reload
was used to recover the secret. Fig. 5 shows the empirical results
averaged over 100 trials. In theory, the secret value will have the
lowest access latency of any index in the array, enabling us to
decode its value. The secret value is one byte wide, therefore the
array must have 256 indices to represent every possible value. The
top of Fig. 5 shows the unsecure baseline. We can see that there is
only one index with an access latency less than 175 cycles; indeed,
this index corresponds to the correct secret value extracted from
the victim process (0x54).

However, both the conservative and enhanced schemes do not
exhibit such an outlier, as shown in the bottom of Fig. 5. This shows
that our mitigation techniques are effective in shielding speculative
data from the covert channel.

Fig. 4. The performance optimized design only delays the forwarding of data
loaded from memory location mem(D) into register r1 (a) until the LD instruction is
passed the ERP (b).

Fig. 5. Access latency for each index of array a in Listing 1, showing baseline and
both schemes.

TABLE 1
Architectural Configuration Parameters

CPU Architecture

CPU Clock 2 GHz LSQ Entries 32
L1 ICache 32 KB (4-way) IQ Entries 64
L1 DCache 32 KB (8-way) BTB Entries 4096
L2 Cache 2 MB (16-way) dTLB Entries 64
Issue Width 8 iTLB Entries 64
ROB Entries 192 FP Registers 256
Branch Predictor LTAGE Int Registers 256

180 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 2, JULY-DECEMBER 2019

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:26:36 UTC from IEEE Xplore. Restrictions apply.

5.3 Performance Impact

The performance impact of both schemes, relative to the baseline
system is shown in Fig. 6. As expected, the more conservative
mechanism results in a relatively large runtime increase, which
averages at 55 percent. This is due to the fact that each Load
instruction must wait until it reaches commit before it is permitted
to forward its data, which could leave dependent instructions
stalled for dozens or even hundreds of cycles.

The performance hit is worse for benchmarks that have rela-
tively low miss rates such as hmmer, tonto or gromacs. For instance,
hmmer has less than 10 misses per 1K instructions. Since for these
applications most Loads are hits, delaying their resolution to com-
mit has the highest performance impact. Applications with high
miss rates (especially LLC misses) such as lbm or mcf exhibit a
lower performance impact because Load misses already stall the
pipeline considerably.

5.3.1 Impact of Early Resolution

In order to evaluate the opportunity created by the early resolution
of instructions, we measure the distance in number of instructions
from the ERP to the head of the ROB (commit point). This data is
shown in Fig. 7 as a per benchmark average. This metric allows us
to quantify the opportunity for earlier forwarding of Load results.

The hmmer benchmark illustrates well how early resolution can
translate into performance improvement. hmmer has the worst per-
formance hit from the conservative design, at a 3.1� slowdown.
However, hmmer also has a relatively large ERP to commit distance
of 36 instructions, which can be interpreted to mean that, on aver-
age, 36 of the instructions in the ROB have reached the ERP and
would be allowed to forward their results–potentially a significant
performance improvement. This is corroborated by the results in
Fig. 6, where we see that the runtime for hmmer with SpecShiel-
dERP is only 30 percent longer than the baseline.

On the other hand, some benchmarks such as mcf and astar
exhibit a short ERP-to-commit distance of only 4 and 3 instructions,
respectively. As a result, they benefit less from ERP monitoring
compared to other benchmarks, but still exhibit a 17 and 8 percent
performance improvement, respectively.

Overall, the performance benefits of the ERP-based design
are substantial, reducing the performance penalty to an average
of 18 percent across all applications we examine, compared to
55 percent for the conservative design.

6 CONCLUSION

Transient execution attacks have revealed fundamental weak-
nesses in how modern processors handle speculative data. This
study presents a first step towards isolating speculative data from
all covert channels that could be used to leak secret information, at
a cost of 18 percent average performance degradation.

ACKNOWLEDGMENTS

This work was funded in part by the Air Force Research Labora-
tory and a gift from Intel Corporation.

REFERENCES

[1] M. Lipp, et al., “Meltdown: Reading kernel memory from user space,” in
Proc. 27th USENIX Security Symp., 2018, pp. 973–990.

[2] P. Kocher, et al., “Spectre attacks: Exploiting speculative execution,” 2019,
arXiv:1801.01203.

[3] M. Yan, et al., “Invisispec: Making speculative execution invisible in the
cache hierarchy,” in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchitecture,
2018, pp. 428–441.

[4] K. N. Khasawneh, et al., “Safespec: Banishing the spectre of a meltdown
with leakage-free speculation,” CoRR, vol. abs/1806.05179, 2018. [Online].
Available: http://arxiv.org/abs/1806.05179

[5] V. Kiriansky, et al., “DAWG: A defense against cache timing attacks in
speculative execution processors,” in Proc. 51st Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2018, vol. 2018, pp. 974–987.

[6] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional speculation:
An effective approach to safeguard out-of-order execution against spectre
attacks,” in Proc. IEEE Int. Symp. High Performance Comput. Archit., pp. 264–
276, Feb. 2019.

[7] A. Bhattacharyya, et al., “SMoTherSpectre: Exploiting speculative execution
through port contention,” CoRR, vol. abs/1903.01843, 2019. [Online].
Available: http://arxiv.org/abs/1903.01843

[8] C. Canella, et al., “A systematic evaluation of transient execution attacks
and defenses,” in Proc. 28th USENIX Conf. Secur. Symp., Ser. SEC’19.
USENIX Association, 2019, pp. 249–266.

[9] Y. Yarom and K. E. Falkner, “Flush+reload: A high resolution, low noise,
L3 cache side-channel attack,” in Proc. Usenix Security Symp., 2014, vol.
2013, pp. 719–732.

[10] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeas-
ures: The case of AES,” in Proc. Cryptographers’ Track RSA Conf. Topics Cryp-
tology, 2006, pp. 1–20.

[11] T. Mohammadkazem, et al., “Context-sensitive fencing: Securing specula-
tive execution via microcode customization,” in Proc. 24th Int. Conf. Archi-
tectural Support Program. Languages Operating Syst., 2019, pp. 395–410.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Fig. 6. Performance impact of both schemes.

Fig. 7. Average number of ROB entries from ERP to commit.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 2, JULY-DECEMBER 2019 181

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:26:36 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1806.05179
http://arxiv.org/abs/1903.01843

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

