IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022 9

A Pre-Silicon Approach to Discovering
Microarchitectural Vulnerabilities in
Security Critical Applications

Kristin Barber™, Moein Ghaniyoun,
Yingian Zhang, and Radu Teodorescu

Abstract—Microarchitectural vulnerabilities have become an increasingly effective
attack vector. This is especially problematic for security critical applications, which
handle sensitive data and may employ software-level hardening in order to thwart
data leakage. These strategies rely on necessary assumptions about the underlying
microarchitectural implementation, which may (and have proven to be) incorrect in
some instances, leading to exploits. Consequently, devising early-stage design tools
for reasoning about and verifying the correctness of high assurance applications
with respect to a given hardware design is an increasingly important problem. This
letter presents a principled dynamic testing methodology to reveal and analyze
data-dependent microarchitectural behavior with the potential to violate assumptions
and requirements of security critical software. A differential analysis is performed of
the microarchitectural state space explored during register transfer-level (RTL)
simulation to reveal internal activity which correlates to sensitive data used in
computation. We demonstrate the utility of the proposed methodology through it’s
ability to identify secret data leakage from selected case studies with known
vulnerabilities.

Index Terms—Hardware security, verification

<+

1 INTRODUCTION

OVER the past decade hardware security has experienced a renais-
sance. This can be largely attributed to advances in offensive security
research for conducting practical, software-controlled microarchitec-
tural attacks which use measurable processor characteristics to infer
data values from execution activity.

Fundamental to microarchitectural attacks is data-dependent
behaviors, which can reveal privileged information through vari-
ous types of resource usage. In other words, the operational seman-
tics of some components are influenced by the data values they
encounter during execution. Therefore, an attack prerequisite is to
determine sources of data-dependent behavior in the microarchi-
tecture that can be modulated to expose information.

This work proposes a principled dynamic testing methodology
to reveal and analyze problematic, data-dependent microarchitec-
tural behavior with the potential to violate assumptions and
requirements of security critical software. We build on top of tradi-
tional digital design workflows, where software RTL simulations
are instrumented to produce detailed traces containing the con-
tents of microarchitectural structures at cycle granularity. These
traces of state observations are then used to identify vulnerabilities
related to the space and time resource usage of applications.

A differential analysis of execution traces is employed to high-
light potential attack vectors, where in each trace the only non-

e Kristin Barber, Moein Ghaniyoun, and Radu Teodorescu are with The Ohio State
University, Columbus, OH 43210 USA. E-mail: {barberk, teodores)@cse.ohio-state.
edu, ghaniyoun.1@osu.edu.

o Yingian Zhang is with the Southern University of Science and Technology, Shenzhen,
Guangdong 518055, China. E-mail: zhangyq3@sustech.edu.cn.

Manuscript received 20 Dec. 2021; accepted 15 Jan. 2022. Date of publication 14 Feb.
2022; date of current version 3 Mar. 2022.

This work was supported in part by Intel Corp. under the Side Channel Academic Pro-
gram and by the Air Force Research Laboratory under the Assured and Trusted Micro-
electronics Solutions award FA8650-20-C-1719.

(Corresponding author: Radu Teodorescu.)

Digital Object Identifier no. 10.1109/LCA.2022.3151256

fixed parameter is the sensitive application’s data of interest.
Microarchitectural state samples are compared across executions
of a security critical region (SCR) within an application, where these
samples have been bucketed into sets according to the sensitive
data values potentially influencing that execution. Irregularities
(biases) across sets can be assessed by performing membership
tests, which indicate data-dependent behavior. We focus on the
domain of applied cryptography for case studies on which to apply
the proposed methodology, as the secret information in these
applications can be readily identified and is well understood. We
choose both vulnerable and hardened implementations of crypto
primitives to study. We utilize the RISC-V BOOM processor as our
testbed and record state traces from RTL simulations during execu-
tion of the selected applications. We find that our method is able to
identify and confirm processor activity which varies as a function
of the secret key for the vulnerable software implementations, as
well as the absence of such security property violations for a
known, robust constant-time implementation. We also show our
framework is able to identify a vulnerable hardware-based optimi-
zation that could break the constant-time implementation.

2 BACKGROUND

An operation that has been notoriously suseptible to leakage of pri-
vate data is modular exponentiation used in many asymmertic
ciphers (RSA decryption), where the exponent is the secret key.
Modular exponentiation is often implemented with the square-and-
multiply algorithm. The binary representation of the exponent is
scanned, starting from the most significant bit and moving to the
right. In each iteration, for every exponent bit, the current result is
squared. If the currently scanned exponent bit has a value of ‘1", a
multiplication by the base is also performed. The crux of the prob-
lem is that depending on the value of the currently scanned expo-
nent bit, a multiplication will be performed or not. This translates to
a clear discrepancy in execution time during iterations, since itera-
tions operating with an exponent bit of value "1” will execute addi-
tional high-latency instructions. A capable attacker can measure the
execution time of these iterations and easily infer the value of the
key bit being scanned in each, recovering the entire secret key [1].

The most common defense against these weaknesses is to employ
constant-time programming techniques. There are two general rules
for writing constant-time code, (1) no control-flow depending on
secret values and (2) no memory accesses where the address depends
on a secret value. Constant-time programming is conducted based on
a set of best practices; however, there have been several instances in
which a gap between necessary assumptions regarding the underly-
ing hardware and it’s true implementation has lead to exploits. Listing
1 shows the square-and-multiply algorithm written to be constant-
time. In this version, the squaring and the multiplication are both
always performed regardless of the currently scanned exponent bit’s
value. The two corresponding intermediate results are stored in the
variables t and r, respectively. The conditional copy is a branch-less
arithmetic assignment, using bit-wise combinations to mathematically
select the correct result. Importantly, the same arithmetic instructions
are executed regardless of which value is ultimately assigned.

Related Work. Despite detection techniques having a rich history,
both static [2], [3] and dynamic in nature, previous approaches pri-
marily focus on the cache and use post-silicon methods (either with
direct measurements [4] or relying on what is architecturally visible
from binary instrumentation frameworks [5]); at which point, much
of the visibility into critical information for reasoning about these
vulnerabilities is no longer accessible. Unlike prior work, we exam-
ine traces produced by a detailed model of the hardware, therefore
not relying on modeling assumptions and having stronger

1556-6056 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:50:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6184-9954
https://orcid.org/0000-0001-6184-9954
https://orcid.org/0000-0001-6184-9954
https://orcid.org/0000-0001-6184-9954
https://orcid.org/0000-0001-6184-9954
https://orcid.org/0000-0002-1744-7672
https://orcid.org/0000-0002-1744-7672
https://orcid.org/0000-0002-1744-7672
https://orcid.org/0000-0002-1744-7672
https://orcid.org/0000-0002-1744-7672
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
https://orcid.org/0000-0002-6474-2201
mailto:barberk@cse.ohio-state.edu
mailto:teodores@cse.ohio-state.edu
mailto:ghaniyoun.1@osu.edu
mailto:zhangyq3@sustech.edu.cn

10 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022

guarantees. This letter provides the first study to demonstrate how
pre-silicon simulation, coupled with tracing infrastructure from
recent agile hardware design flows, and differential analysis techni-
ques can be used to search for microarchitectural vulnerabilities in
hardware designs more effectively.

Listing 1. Hardened SAM implementation in C with condi-
tional-copy operation

uint32 modexp (uint32 a, uint32 mod, unsigned char exp([4]) {

1

2 int 1i,73;

3 uint32 r = 1,t;

4 for (i=3;1i>=0;1i--) {

5 for (3=7;3>=0;3--) |

6 r = ((uint64)r+r) % mod;

7 t = ((uint64)ax*r) % mod;

8 cmov (&r, &t, (exp[i] & (1<<3)) >> 3J);

9 }

10 }

11 return r;

12 }

13

14 void cmov (uint32 *r, uint32 *a, uint32 Db)
15 {

16 uint32 t;

17 b = -b;

18 t = (xr © xa) & b;
19 *r "= t;

20 }

3 DETECTION APPROACH

The goal of our proposed approach is to uncover processor activity
that is correlated with sensitive data values used in computation.
Our methodology analyzes the microarchitectural state space over
instruction sequences considered to be security critical regions.

Threat Model. Our solution is designed for pre-silicon security
verification and assumes access to the RTL implementation of the
processor-under-test. It is intended for analysis of high assurance
applications where security critical code and data can be easily
identified and desired security properties can be enumerated. Vul-
nerabilities identified do not presume a side-channel from which
resource modulation is measurable, but rather provides insights
about potentially problematic value-dependent execution.

State Space Construction. We first construct a state space representa-
tion of the execution trace. A state object is defined at cycle granularity
having multiple parameters, where each parameter is a microarchitec-
tural structure. To compare states, it is necessary to define an equiva-
lence relation for these parameters. These definitions of equivalence
are inherently dependent on the characteristics and organization of
each microarchitectural structure. Equivalence relations are shared for
similar structures and classified according to whether they are multi-
dimensional, where state is encapsulated over several entries (Reorder
Buffer, Load Queue, Store Queue, Line-Fill Buffer, Physical Register
File); single-entry, having a single value (Next-Line Hardware Pre-
fetcher) or events expressed as a bit-mask to indicate presence of activ-
ity in a given cycle (Functional Unit Occupancy).

Analysis Methodology. The central rationale for the following meth-
odology is based on the hypothesis that the microarchitectural state
affected by data should reveal itself as value-dependent differences in the state
samples that occur with high probability. For example, an implementation
of the square-and-multiply (SAM) algorithm is considered free of leak-
age if the execution of each iteration/round results in the same
sequence of microarchitectural states. Under this constraint, finding a
state which appears with high probability during iterations when the
secret exponent’s value is 1" and low probability when it is "0’ (or vice
versa) indicates a potential violation in requirements.

At a high-level, a form of differential analysis for microarchitec-
tural state is conducted, accomplished in the following six steps
and further outlined in Fig. 1. This process compares state samples

Uniquification

$=09,a=01

& & "] Observation Frequency
o 4+ A

Key &wmmmmﬁ
10101010....1010 Region Specificat

di:10 10 10 10 0

 ldgito 10 10 0 1

RTL Threshold Satisfiability?

Simulation

Microarchitectural
Trace

Application

>¢,<a

0 3

_'_1

Beomponent

°

Wmm@zmmm/

¢ N /

¥ € [ROB, LDQ, STQ, LFB, NLP, BUU]

Fig. 1. High-level analysis flow for processing microarchitectural state samples
from the classic Square-and-Multiply algorithm.

across executions of the security critical region-during which sen-
sitive application data has distinct values-by @ placing samples
into sets according to those values. In this way, @ irregularities
(biases) across sets can be assessed (which are interpreted to indi-
cate data-dependent behavior) by performing membership tests.
First, ® unique elements are filtered from each set and @ representa-
tive sets are synthesized for each data class by selecting states
which appear in a high percentage of iterations with that data
value. The number of classes in this example is two (‘0" and '1’).
Next, a @ resultant set, ., oncni, 1S Created by aggregating these
representative class sets. This global set holds all microarchitectural
state samples constituting statistically significant irregularities
across iterations where data values differ. The number of B sets is
©® equal to the number of microarchitectural structures participat-
ing in the analysis and used as a reference for comparison. When
any f set is non-zero, this indicates data-dependent behavior. Ele-
ments common t0 B,,ponent S€tS across traces @ (executions with
varying secret keys) provide stronger evidence of correlation.

Similarity Thresholds. Similarity thresholds correspond to the
upper and lower bounds used in determining whether a state sam-
ple is representative of a particular class and are denoted as ¢ and
a, respectively. They provide a means to curate relevant state sam-
ples, helping to eliminate false positives.

4 CASE STUDIES

We consider three implementations of modular exponentiation
with different degrees of vulnerability to side channel leakage.
While our analysis captures most microarchitectural state, we
show results for a subset of three important functional blocks: the
Load Queue, Store Queue and Reorder Buffer.

Experimental Setup and Applications. We evaluate the approach
with a system-on-chip design generated by the Chipyard frame-
work. Our prototype SoC used to simulate the selected case studies
is configured to use Chipyard defaults with the SmallBoom core.
We selected the BearSSL cryptographic library implementation of
the modular exponentiation primitive to use as a baseline. Applica-
tions are compiled statically for a 64-bit machine with riscv-
unknown-elf-gcc, optimization level -Os. BearSSL employs a
conditional-copy of intermediate results for the modular exponen-
tiation operation in order to be constant-time. We modify this copy
operation to create variants which re-introduce known vulnerabil-
ities. Each application variant is run against 50 different 1024-bit
keys, where care is taken to select keys with varying distributions
of bit values as well as keys with strided bits (regular patterns of
alternating values) to increase hysteresis in prediction mechanisms
and the probability that they will be triggered. Results are shown
for one hundred iterations.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:50:53 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022 11

Load Queue Store Queue Reorder Buffer

R300000000000000C X< HC 200K 300000000

3 EEE x

Iteration Frequency

]
. < 3, 117 R
x - R X EN AR
R T B 3
States

60 80 100 200 300 400

40
States States

Fig. 2. Microarchitectural state frequency for each data class (d.) and structure
when executing the vulnerable copy implementation, with ¢=.90 and «=.10
highlighted. Each 6, is composed of the microarchitectural state samples of the
corresponding data class (d.) falling within the region encompassed by ¢, where
the opposite class(es) fall into the « region. Key=0xaaaa. . . .aaaa.

Case V1. The V1 case study uses a canonically vulnerable imple-
mentation of modular exponentiation with a strong control-flow
dependence on sensitive data. In Fig. 2, the results following step
©® are shown. Each subplot depicts the frequency of unique states
for each distinct data class (d.) when executing these instructions.
The plots show the number of iterations a given state s was
observed for dy (blue circles) and d; (orange crosses) with respect
to a particular microarchitectural structure. The green and red
regions represent similarity thresholds where ¢=0.90 and «=0.10.
These statistics are used in creating representative class sets for
each 0.. The secret exponent from this trace is strided, in which
every other bit flips.

From these plots, clear discrepancies between dj and d; obser-
vations can be seen. Most notably, the LDQ and ROB exhibit several
microarchitectural state samples meeting the criteria of the similar-
ity thresholds, with d; elements appearing in at least 90% of itera-
tions, while those same elements appear in less than 10% of
iterations belonging to dy. This indicates a strong bias in microarch-
itectural state content, with respect to the LDQ and ROB, across d,
data classes. This bias manifests through timing leakage, as shown
in Fig. 3 with plots of the latency distribution (in cycles) for the exe-
cution of the copy operation. We can see from Fig. 3a that V1 has
two distinctive regions corresponding to each d., separated by
roughly 150 cycles.

Case V2. The V2 case study uses what is intended to be a mitiga-
tion for the vulnerability in V1, but is an incomplete solution. This
version is based on a ”fix” incorporated into the modular exponen-
tiation routine in a previous version of 1ibgcrypt (1.5.3). Listing
2 shows our implementation introducing the erroneous counter-
measure. The code attempts to camouflage control-flow that is a
function of the secret exponent by unconditionally calling the mem-
move function, but assigning the intermediate result to a ”dummy”
variable in cases where the copy actually should not be performed.
In other words, the algorithm executes both the square and multi-
ply steps for each bit, but ignores the result of the multiply step for
bits of value ‘0" by effectively discarding it into an unused variable.

In the V1 application, one could argue the differential signal is
amplified since aside from the function preamble and register spill-
ing, executions of the security critical region are entirely disjoint
with respect to dy and d;. In the case of V2, there is substantially

‘ a . 0 -1
Load Queue Store Queue Reorder Buffer
1O T al 3 vole N rofag x“ .
P Y 3y . ’
08 - 0s{ | .a® A s ﬁ!
> - S B
g PC AR 2%
g o . O]
Zos 06 s 0e :
g .
= . £) o< @
Soa 0a{ e ® 041 ¥§ ga'o 3
B S
g |- E = 3 % g%
Zoz 02 i xX % 02 22
SO o R o i]
- o " o 3¢ % X £ 2 a O
o - o em—| e o e | 00| %S ba

)) G 20 4o 60 80 160 130 140)

States

160 200 300 400 500 600

o
States States

Fig. 4. Microarchitectural state frequency for each data class (d.) and structure
when executing the incorrect mitigation from V2in Listing 2, with ¢=.70 and «=.30.

more overlap in the microarchitectural state space across iterations.
This can be seen in the LDQ, STQ and ROB subplots from Fig. 4. An
interesting aspect to consider when contrasting V1 and V2 is that, at
least from a cursory perspective, the V2 strategy is successful in its
objective to reduce the side-channel signal used to exploit the vul-
nerability from V1. As Fig. 3b shows, V2 (dummy assignment) has
largely indistinguishable latency distributions, making it difficult to
determine d, from timing information (iteration latencies) alone.

However, it can be seen from Fig. 4 that in fact there are statisti-
cally significant differences across d. in microarchitectural state (in
particular, those inside the dashed red lasso on the Store Queue
subplot). This bias established by our approach is corroborated by
the findings in the TLBleed attack [6]. TLBleed found if the dummy
and working set result variables happen to lie on separate pages,
alternating accesses can lead to dTLB misses and a corresponding
delay. Indeed, a portion of these biased Store Queue states refer-
ence those result variables. This shows that our approach can pin-
point potential leakage through microarchitectural channels even
in the absence of a directly-measured timing leakage.

Listing 2. Erroneous countermeasure used in the V2
implementation

1 void

2 CCOPY_v2 (uint32_t ctl, wvoid *dst,
3 void xdummy, const wvoid xsrc,

4 size_t len)

5 {

6 if (ctl) |

7 memmove (dst, src, len);
8 }

9 else {

10 memmove (dummy, src, len);
11 }

12 return;

Case CT. The CT case study utilizes the BearSSL library constant-
time modular exponentiation routine directly, which uses a branch-
less assignment implemented as a boolean expression. Fig. 6 shows
the distribution of state samples for each d. from the execution of
this application using a key with uniformly distributed d.. We can
immediately see regular patterns of state observations across the
data classes (with relatively minimal deviation between them), indi-
cating that the same operations are performed irrespective of the

(a) (b)

_ >I|I|>uu il _ » =

cyecles Cyeles cyeles

Fig. 3. Latency distribution of copy operation. (a) V1, control-flow dependency; (b)
V2, unused result; (c) CT, branchless assignment.

H}]oocooooooot...1,0iiii¢ﬁiiiii..¢
081 08 4
061 0.6
044 04
02 02 P o
b 0.0

b 4 6 8 W n 0o 2 4 & 8 10 12 14

States

States

Fig. 5. Execution Unit Utilization of BOOM processor when executing the condi-
tional-copy for (a) baseline and (b) aggressive scheduling implementations.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:50:53 UTC from IEEE Xplore. Restrictions apply.

12

Load Queue

Store Queue

Reorder Buffer

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 1, JANUARY-JUNE 2022

e=1

10{g

R

R

22 % e o o

xo0

o
%

2
e

[N ®

]

Iteration Frequency
2
2

cnqp &)
5) o

- 5%

a ° 20

o o

o 2 a 5 s 10 o
States

2 40 60 80
States States

Fig. 6. Microarchitectural state frequency for each data class (d.) and structure when
executing the BearSSL constant-time copy implementation, with ¢=.80 and «=.20.

currently scanned key bit. In fact, we do not find any statistically sig-
nificant differences in microarchitectural state between the data
classes which could reasonably be used to distinguish them (for the
microarchitectural structures we analyze). These results confirm the
soundness of this constant-time implementation on this particular
microarchitecture, with respect to our threat model.

Case CT-V. The following case study demonstrates how this
methodology can be used to reveal microarchitectural design
choices capable of forming new vulnerabilities. We modify the
existing BOOM processor with an optimization to the scheduling
logic of the execution cluster. The optimization skips the execution
of AND and MUL instructions if one of their input operands is ‘0’,
and forwards their result directly to dependents. An early snoop of
the operand values is performed for such instructions during the
rename stage. This type of performance optimization can introduce
a potential vulnerability to constant-time code. In Listing 1, we can
see the control-bit (b, representing the key bit value) will be an
operand to an AND instruction (line 17). This means the optimiza-
tion will only affect key bit values of ‘0".

We use our framework to verify if this is observable in the
microarchitectural state. Fig. 5 shows the execution unit utilization
(EUU) for the baseline BOOM processor (a) and for the version
with the scheduling optimization (b). In the optimized version we
observe multiple states with distinct correlation to data classes
(key values)-these are highlighted as stars in Fig. 5b. The baseline
exhibits no such correlation. The reports generated from this analy-
sis show details of instruction residency in execution units for the
identified states and confirm that these variations are due to differ-
ent co-scheduling that results from the eager execution enabled by
the scheduling optimization.

5 FUTURE WORK AND CONCLUSION

This letter proposed the first treatment of the microarchitectural
state space explored during RTL simulation as a means to detect
hardware functionality having leakage potential with respect to an
application. We present results for a set of implementations of mod-
ular exponentiation, demonstrating its utility through an ability to
correctly capture known vulnerabilities and highlighting meaningful
information which would be opaque to other methods.

We expect this technique to extend well in capturing other forms
of implicit and explicit value-dependent behavior in the microarchi-
tecture of complex processors, as an aid for reasoning about the
security implications of various hardware optimizations on high
assurance applications. The statistics reported can also serve as a
building block towards more automated forms of detection.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Architecture
Research Lab at Ohio State, Matthew Fernandez and Yuan Xiao
from Intel, and Andres Marquez and Kevin Barker from the Pacific
Northwest National Laboratory for valuable feedback on this work.

REFERENCES

[1] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low noise,
L3 cache side-channel attack,” in Proc. 23rd USENIX Secur. Symp., 2014,
pp. 719-732.

[2] G. Doychev, B. Kopf, L. Mauborgne, and J. Reineke, “CacheAudit: A tool for
the static analysis of cache side channels,” ACM Trans. Inf. Syst. Secur., vol. 18,
no. 1,2015, Art. no. 4.

[3] S.Chattopadhyay, M. Beck, A. Rezine, and A. Zeller, “Quantifying the infor-
mation leak in cache attacks via symbolic execution,” in Proc. 15th ACM-
IEEE Int. Conf. Formal Methods Models Syst. Des., 2017, pp. 25-35.

[4] O. Reparaz, J. Balasch, and 1. Verbauwhede, “Dude, is my code constant
time?,” in Proc. Des. Automat. Test Eur. Conf. Exhib., 2017, pp. 1701-1706.

[5] S. Weiser, A. Zank], R. Spreitzer, K. Miller, S. Mangard, and G. Sigl, “Data -
differential address trace analysis: Finding address-based side-channels in
binaries,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 603-620.

[6] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside buffer:
Defeating cache side-channel protections with TLB attacks,” in Proc. 27th
USENIX Secur. Symp., 2018, pp. 955-972.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:50:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

