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Abstract—Hardware security has recently re-surfaced as a
first-order concern to the confidentiality protections of com-
puting systems. Meltdown and Spectre introduced a new class
of microarchitectural exploits which leverage transient state as
an attack vector, revealing fundamental security vulnerabilities
of speculative execution in high-performance processors. These
attacks profit from the fact that, during speculative execution,
programs may execute instructions outside their legal control
flows. This is used to gain access to restricted data, which is
then exfiltrated through a covert channel.

This paper proposes SpecShield, a family of microarchi-
tectural mitigation techniques for shielding speculative data
from covert channels used in transient execution attacks.
Unlike prior work that has focused on closing individual
covert channels used to leak sensitive information, SpecShield
prevents the use of speculative data by downstream instructions
until doing so is determined to be safe, thus isolating it from
any covert channel. The most secure version of SpecShield
eliminates transient execution attacks at a cost of 21% av-
erage performance degradation. A more aggressive version
of SpecShield, which prevents the propagation of speculative
data to known or probable covert channels provides only
slightly relaxed security guarantees with an average of 10%
performance impact.

Keywords-hardware security, transient execution attacks,
speculative execution, covert channels

I. INTRODUCTION

Speculative execution has been used for decades in out-

of-order processors as a mechanism for hiding the latency

of branch resolution and other long-latency instructions,

helping to expose instruction level parallelism and increase

performance. Modern processors frequently execute so-

called transient instructions that are not specified by their

legal control flows, due to branch misprediction, out-of-

order execution, delayed exception handling, etc. When a

misprediction is detected the processor discards any erro-

neous instructions and continues execution from a logical

checkpoint. Unfortunately, the Meltdown [1] and Spectre

[2] attacks have exposed fundamental vulnerabilities in how

modern processors implement transient execution.

These attacks leverage transient execution to access oth-

erwise restricted data. The first stage of these attacks uses

transient instructions executed outside the legal control flow

to retrieve secret data that is otherwise inaccessible to the

application. This can include data belonging to a privileged

process or data normally protected by the application’s con-

trol flow, such as array boundary checks. Although the direct

results of transient execution on the architectural (externally

visible) state are rolled-back, side effects of that execution

remain in the micro-architectural state of the processor and

can be leaked. This insight represents the foundation for

transient execution attacks.

In the second stage of these attacks, a covert channel is

used to leak the secret retrieved in the first stage. Covert

timing channels consist of a trojan process (transmitter)

which modulates the timing of a shared system resource

to reveal sensitive information to a spy process (receiver).

The trojan and spy do not communicate explicitly, but

covertly by observing the timing of certain events with

respect to the shared resource [3]. Covert channels provide a

mechanism to transfer the results of transient execution into

the architectural state of the processor where they can be

recovered by an attacker. Any micro-architectural structure

which can be manipulated by an attacker and later observed

in a repeatable and consistent fashion can be leveraged as a

covert channel. Although cache-based covert channels [4],

[5] were used in the Spectre and Meltdown attacks and

arguably provide the highest accuracy and bandwidth, other

channels are possible; including SIMD units [6] and some

execution ports [7].

This paper proposes SpecShield, a mechanism for shield-

ing speculative data from any potential covert channel.

Unlike prior work [8]–[11] that has focused on closing

specific covert channels, SpecShield is more general and

addresses the root cause of transient execution attacks, which

is the use of speculative data by dependent instructions that

can leak it.

We propose three SpecShield designs with different secu-

rity and performance trade-offs. Depending on the security

assessment of a given micro-architecture, SpecShield can be

tuned to guard against only those functional units and micro-

architectural structures determined to be vulnerable to leak-

age. This is accomplished by controlling data-flow within the

pipeline, inhibiting access to sensitive data by instructions
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which utilize vulnerable micro-architectural structures until

execution is outside the window of speculation. SpecShield

presents a solution with more flexibility and less complexity

compared to existing hardware solutions.
The most conservative version, SpecShieldSTL delays the

forwarding of speculative data read from memory by a Load

– and the wakeup of dependent instructions – until the

Load instruction commits and is therefore guaranteed to no

longer be speculative; guaranteeing speculative data can no

longer be leaked. However, the performance overhead of this

approach is high.
To mitigate the performance impact we develop Spec-

ShieldERP, a more efficient design that allows the early

resolution of some speculative Load instructions. An in-

flight Load instruction is considered early resolved if all

older branch instructions are resolved and not misspeculated,

and all older load/store instructions have their physical

addresses returned by the TLB with no exceptions or faults.

The results of these Loads can therefore be safely forwarded

to dependent instructions.
The third proposed design, SpecShieldERP+ relaxes some

of the security guarantees in order to further reduce the

performance impact. This design allows the selective for-

warding of speculative data to instructions that are deemed

to have low leakage risk. The propagation of speculative data

stops when it reaches an instruction classified as having a

high risk of being used in a covert channel. We propose

a mechanism for tagging the high covert channel risk in-

structions at decode. We also propose allowing the list of

high risk instructions to be updated in production systems

through firmware patches to prevent leakage through new

covert channels that might be discovered after the hardware

is shipped.
SpecShieldERP and SpecShieldERP+ defeat transient ex-

ecution attacks at an average performance cost of 21% and

10%, respectively.
Overall, this paper makes the following main contribu-

tions:

• Proposes a microarchitectural framework for eliminat-

ing transient execution attacks which grant access to

arbitrary memory.

• Unlike prior work that has focused on closing specific

covert channels, SpecShield is the first general solution

addressing speculative data-flow within the pipeline.

• Implements a mechanism to flexibly tune the scope of

protections, allowing for performance savings depend-

ing on the security needs of a given microarchitecture.

• Allows in-field tuning of the level of isolation for

speculative data to respond to attacks discovered in the

future.

The rest of this paper is organized as follows: Section II

provides background on transient execution attacks. Section

III discusses our threat model. Section IV presents the

SpecShield design. Sections V and VI present SpecShield’s

evaluation. Section VII analyzes implications on security.

Section VIII discusses related work and Section IX con-

cludes.

II. BACKGROUND

A. Transient Execution Attacks

Processors attempt to guess the outcome of long-latency

operations as an alternative to stalling dependent instructions

until the correct result is known. This is referred to as

speculative (or transient) execution, and although it is often

conceptually coupled with branch prediction, speculation has

broader applications. Processors execute transient instruc-

tions following a multitude of instructions that may change

control flow. These include branches, memory instructions

that can cause address aliasing or page faults, and any other

instructions that can cause exceptions. Speculative execution

sometimes leads to normally unreachable code paths to

be executed and restricted data to be accessed. This has

conventionally been considered safe, since misspeculated

state is cleaned up by the processor without any changes

to the architectural (programmer-visible) state. However,

transient execution attacks have found creative ways of

exploiting side-effects of speculatively executed instructions

to leak secret data.

Since Spectre and Meltdown were disclosed, a number

of transient execution attacks have been discovered that

differ in the speculative behaviors leveraged and covert

timing channels used to exfiltrate the data of interest. A

comprehensive survey of known transient execution attacks

and defenses can be found in [12]. We briefly present

Spectre-v1 as an illustrating example. Listing 1 shows the

disclosure gadget from that attack. An attacker first trains the

branch predictor to ensure a missprediction when x > lenb
by executing this branch several times with values of x
which are valid. Next, the attacker selects a malicious value

for x which will read outside the bounds of the array and into

an unauthorized area of memory, presumably where secret

data resides. Since the branch predictor has been trained

to guess that x will have an in-bounds value, execution

continues down the misspredicted path and a restricted

value is accessed by the memory reference b[x]. Although

secret data has been accessed, it will be cleared out of the

architectural state of the system when the missprediction is

identified. Before that happens, however, the secret can be

leaked through a cache timing channel.

This is accomplished by using a traditional cache timing

attack technique such as Flush+Reload [4] or Prime+Probe

[5]. First, the cached contents of array a are set to a known

state, where a is a shared resource acting as the covert

channel. The secret accessed by the memory reference b[x]
is then used to access a location in array a that is dependent

on the restricted value, leaving a secret-dependent footprint

in the cache. The attacker probes each cache line containing

a and infers the secret value from the index exhibiting an
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anomaly in access time relative to the other indices. In

Flush+Reload, the secret data would correspond to the array

index with the lowest access latency.

1 if (x < lenb)
2 y = a[b[x] * 512];

Listing 1: C++ Spectre-v1 disclosure gadget.

1 ld r1, lenb
2 ld r2, x
3 bge r2, r1, done
4 ld r3, r2(b)
5 slli r3, r3, 9
6 ld r4, r3(a)
7 sd r4, y
8 done: ...

Listing 2: RISC assembly of Spectre-v1 disclosure gadget.

III. THREAT MODEL

SpecShield offers protections against attack scenarios

where the access to sensitive data and covert leaking of this

data are both executed speculatively. This includes attacks

where the opening to the speculative window is the result

of:

• Exceptions, including Meltdown (Rogue Data Cache

Load) and Foreshadow [13]

• Branch misprediction, including Spectre-v1 (Bounds-

Check-Bypass)

• Memory aliasing misprediction, such as Spectre-v4

(Speculative Store Bypass) [14]

• Control-flow hijacking, such as Spectre-v2 (Branch

Target Injection) and ret2spec [15] in cases where

the data access and covert communication are both

contained within the gadget where control-flow has

been re-steered.

Figure 1 illustrates the speculative data access path (shown

in red) on a diagram of an out-of-order core. We assume

secret data can reside in any level of the memory hierarchy.

Once speculatively loaded into the processor pipeline, a

number of covert channels can be used to leak the secret

data. Examples of possible covert channels are highlighted

in blue.

Most prior attacks have used the cache as a covert channel

and previously proposed hardware solutions [8]–[11], [16]

are designed to close that channel. However, other covert

channels are possible. For instance, NetSpectre [6] uses the

access latency to the SIMD (AVX) unit to leak secret data,

while SMoTherSpectre [7] uses contention for execution

ports as a covert channel. In fact, any measurable property

of a processor implementation has the potential to leak

information [17]. Table I summarizes most known transient

execution attacks and the type of covert channel used to
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Scheduler/Reservation Stations
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Memory Subsystem
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Int/FP/SIMD Exec. Cluster
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Secret
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Speculative Data Access Path

Register FileSecret

ITLB

Figure 1: Overview of the threat model for speculation-based

attacks in modern out-of-order processors.

exfiltrate information. While closing individual channels is

generally useful to improving security, it is not the best

approach for addressing transient execution attacks. Devel-

oping protection mechanisms for a particular covert channel

leaves the processor vulnerable to the discovery of other

practical covert channels in the future.

Transient Execution Attack Covert Channel Used
Spectre-v1 [2] Cache
Spectre-v2 [2] Cache
Meltdown (v3) [1] Cache
Spectre-v3a [18] Cache
Spectre-v4 (SSBD) [14] Cache
Meltdown/SpectrePrime [19] Coherence Messages
ret2spec [15] Cache
LazyFP Restore [20] Cache
Foreshadow [13] Cache
NetSpectre [6] AVX
SMoTherSpectre [7] Execution Ports
MDS attacks [21] [22] [23] Cache

Table I: Transient execution attacks and the covert channel

used for data exfiltration.

A. Out of Scope for SpecShield

SpecShield protects memory-resident secrets by isolating

them from speculative computations after being loaded into

the pipeline. SpecShield does not consider register-resident
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secrets: secret data retrieval which did not occur under

misspeculation but rather represents a legal access now part

of the committed state of the processor.

As such, out of scope for this work are attacks such as

Spectre-v3a (Rogue System Register Read) [18] and LazyFP

[20], where the data of interest resides in a restricted register.

Unauthorized access to the register contents is achievable

during speculative execution due to lazily enforced excep-

tions, similar conceptually to the Meltdown attack. These

attacks have been addressed through microcode updates and

enhanced clean-up routines for inter-process data during a

context switch by the operating system, respectively.

Additionally, Spectre-v2 attacks with the following prop-

erties are not addressed by SpecShield: a) load of secret

data into a register through legal control-flow, b) pre-loaded

secret closely followed by an indirect branch vulnerable

to poisoning, c) control-flow hijacking occurs through this

indirect branch to a chosen gadget and d) gadget leaks reg-

ister contents through some covert communication channel.

Protecting against this type of attack can be done currently

using other Spectre-v2 specific mitigations such as retpolines
developed by Google [24], which address the root cause

of Spectre-v2 attacks by eliminating an attacker’s ability to

poison the branch-target-buffer and re-steer execution in the

first place.

SpecShield focuses on attack scenarios granting arbitrary

access to memory. Protecting register-resident secrets would

require not only the policing of speculative data, but also

policing the committed state of the register file during

speculative execution; this requires a different approach and

we leave addressing this narrower threat to future work.

Note that, by design, SpecShield allows for speculative

data to be loaded into the cache. However, the presence

of secret data within the memory hierarchy alone does

not represent a security risk. A requirement of transient

execution attacks is the ability to transfer information from

the speculative domain into the architectural state of the

processor. We eliminate the ability for an attacker to satisfy

this requirement. Therefore, secret data residing in the cache

is useless to an attacker unless there is a way in which it can

be covertly leaked and decoded after the speculative window

has closed.

IV. SPECSHIELD DESIGN

Key to our approach is the observation that, by definition,

the leakage source (covert channel) has a data-dependence

on the secret value, as shown in the example in Listing 1.

The access into array a is dependent on the secret value

referenced by b[x]. These two memory references form

the transmitter-side of the covert channel and must both be

executed speculatively, before the misspeculated instructions

are squashed. Therefore, if we can delay the forwarding

of data to dependent instructions until we can confirm the

producing instruction is no longer speculative, we can inhibit

OOO Ex. Engine

Register FileSecret

Scheduler/Reservation Stations

L2

L1 Data

Memory Subsystem

Front End

Fetch/
Decode

Int/FP/SIMD Exec. Cluster
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Data Access 

Path
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Channels

Secret
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in Spectre/
Meltdown

SIMD channel 
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NetSpectre 
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Table
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Main Memory
Secret

Secretc

SpecShield State

Secret

Possible Covert Channels
Speculative Data Access Path
SpecShield Changes/Additions

ITLB

Figure 2: SpecShield isolates speculative data from covert

channels used to leak secret information.

leakage and restrict the formation of the transmitter. This

removes the ability to construct any covert channel that can

leak this data.

To accomplish this goal we change the timing of when

speculative data loaded into the processor’s pipeline can be

used by dependent instructions. Figure 2 shows a high-level

view of how SpecShield integrates into a processor’s pipeline

design. SpecShield encompasses three possible designs, each

with different security and performance trade-offs.

A. SpecShieldSTL: Speculative Data Stall

The most conservative SpecShield design, which we call

SpecShieldSTL, delays the forwarding of data returned by a

speculative load instruction until the instruction reaches the

head of the reorder buffer (ROB) and is ready to commit.

Figure 3 illustrates the state of the ROB for a code example

that includes a LD instruction followed by two dependent

instructions (ADD and SUB). Figure 3(a) illustrates the cycle

in which the LD receives the requested data from memory.

Normally the value of mem(D) would be forwarded to all

dependent instructions as well as stored in physical register

r1.
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ROB

head

(commit)

tail

…

…

LD r1, mem(D)

ADD …,r1,…
BR <>

SUB …,r1,…

…
…

LD returns data to r1 LD can commit
(a) (b)

ROB

head

(commit)

tail

…

…

LD r1, mem(D)

ADD …,r1,…
BR <>

SUB …,r1,…

…
…

Figure 3: ROB state for SpecShieldSTL at different time

snapshots. The forwarding of data loaded from memory

location mem(D) to dependents is delayed (a) until the LD
instruction is ready to commit (b).

Baseline Wakeup/Select/Execute/Retire Pipeline

Wakeup Select Execute … Retire… …LD r1, mem(D)

Wakeup Select Execute … Retire… …ADD …,r1,…

Wakeup Select Execute … Retire… …SUB …,r1,…

Wakeup Select Execute … Rebroadcast/Retire…LD r1, mem(D)

Wakeup Select Execute … Retire… …ADD …,r1,…

Wakeup Select Execute … Retire… …SUB …,r1,…

(a)

(b)

SpecShield Wakeup/Select/Execute/Retire Pipeline

Figure 4: Baseline design (a) and SpecShieldSTL changes

(b) to the timing of the Wakeup/Select pipeline to delay the

broadcast of speculative LD results.

In SpecShieldSTL, when the LD data returns, the state of

its ROB entry is checked. If it is not at the head of the ROB,

the result of the LD will silently update the physical register

corresponding to r1, but it will not broadcast the data on

the result bus to dependent instructions. Since the physical

register is assigned to r1, it will not be recycled until the

LD instruction retires. Also, the LD will not be marked as

complete, forcing any r1-dependent instructions added to

the ROB after the LD returns to wait.

When the LD is ready to commit, its data is read from

the physical register and broadcast to dependent instructions

(Figure 3 (b)). At that point the LD is guaranteed to no

longer be speculative. This ensures that no speculative data

will be manipulated by other instructions that could leak

information.

The Wakeup/Select logic in SpecShieldSTL has to be

modified to consider all LD instructions as high (and vari-

able) latency instructions. As a result, no LD-dependent

instructions will be woken up when the LD is dispatched.

Figure 4 shows the timing of the typical wakeup/select

pipeline and the changes made to delay the wakeup of de-

pendent instructions until the result of the LD is rebroadcast

before retirement.

SpecShieldSTL is straightforward to implement in hard-

ware requiring minimal changes to existing designs. How-

ever, delaying all instructions dependent on speculative loads

by dozens or potentially hundreds of cycles leads to a

significant performance impact, as will be shown in Section

VI.

B. SpecShieldERP: Early Resolution

To address the performance impact of SpecShieldSTL,

we develop a mechanism for early detection of non-

misspeculated loads that allow their results to be forwarded

earlier to dependent instructions. We call the performance

optimized design SpecShieldERP. We define an Early Res-

olution Point (ERP) in the ROB as the most recent in-

flight instruction in program order for which the following

conditions are satisfied:

1) All older branch instructions (in program order) have

been resolved and their actual direction is known.

2) All older load and store instructions have had their

address computed, and a TLB translation has been

performed.

3) No branch missprediction or memory access exception

has been raised by either of the above instruction

types.

By definition, all instructions between the head of the

ROB and the ERP can be considered safe or “resolved”

with respect to their ability to speculatively access data

outside their legal control flow. Similar definitions have been

proposed in previous work, with varying goals related to

eager resource re-allocation in OoO processors [25]–[27].

Figure 5 shows two snapshots of the ROB content and the

position of the ERP. In Figure 5(a), the ERP is below the

BR<c1> instruction. This means that all Branch and Load

instructions between the ERP and the ROB head have been

resolved and are neither misspeculated nor have they raised

an exception. The BR<c1> instruction, on the other hand,

has not been resolved, thus preventing the ERP from moving

upwards.

SpecShieldERP allows the immediate forwarding of re-

sults for all the Load instructions that are older than the ERP

and can therefore be considered safe. The result of the LD
r1, mem(A) instruction can immediately be forwarded to

its dependent instructions, which in this example is the ADD
instruction. This allows Load results to be forwarded much

earlier than in SpecShieldSTL, which restricts all Loads to

wait until commit. All other Loads that are above the ERP

(e.g LD r2, mem(B) in Figure 5) will continue to delay

the forwarding of their results until they reach the ERP.

The ERP is updated every cycle by a dedicated ERP

Unit (Figure 2) by checking the state of all Branch and
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ROB

head

(commit)

tail

…

LD r1, mem(A)

ADD …,r1,…

BR <c1>,target1

SUB …,r2,…

LD r2, mem(B)

ER

1
1

1

…

BR <c2>,target1
…

ERP1
0
0
0
0

(a)

…

…
…

0
0
0
0
0

…

ROB

head

(commit)

tail

…

LD r1, mem(A)

ADD …,r1,…

BR <c1>,target1

SUB …,r2,…

LD r2, mem(B)

ER

1
1

1

…

BR <c2>,target2
… ERP

1
1
1
1
1

(b)

…

…
…

0
0
0
0
0

…

FP

0
1

0

0
0
0
1
0
0
0
0
0
0

FP

0
1

0

0
0
0
1
0
0
0
0
0
0

Figure 5: (a) SpecShieldERP immediately forwards the

result of the LD r1 instruction, which is behind the ERP,

and delays forwarding the result of LD r2, mem(B). (b)

When the LD r2 instruction is “early resolved” its result

stored in r2 is forwarded to dependents.

Load/Store instructions between the ERP and the ROB tail.

The ERP is moved to the instruction below the oldest

unresolved Branch or Load/Store instruction in the ROB.

Figure 5(b) shows that after the BR<c1> instruction has

been resolved and correctly predicted and the LD r2,
mem(B) instruction has completed the address translation

phase with no exceptions, the ERP moves up. The ERP will

be updated to point to the instruction below BR<c2>, which,

in this example, is the oldest unresolved Branch in the ROB.

When the LD r2, mem(B) returns with the mem(B) data,

it can be forwarded freely to all dependent instructions (in

this example the SUB instruction).

A new ER status bit associated with each ROB entry

indicates whether the instruction has been “early resolved”

or not. When a Load returns the ER bit is checked. If it is

set the result is immediately broadcast on the result bus to

all dependents. If it is not set, the destination register of the

LD is silently updated. A “forward pending” (FP) bit will

be set in that Load’s ROB entry. When the Load is early

resolved the FP bit is checked. If it is set, the result of the

Load will be rebroadcast to dependent instructions.

Even though SpecShieldERP is significantly less conser-

vative compared to SpecShieldSTL it does not significantly

relax the security properties of SpecShieldSTL. By allowing

only data loaded by instructions within the Early Resolution

window to be forwarded to dependents, and serializing ad-

dress computation and permissions check with data access,

SpecShieldERP prevents any speculative data from being

accessed by any other instruction in the pipeline.

1) Other Exceptions and Interrupts: While it is possible

for the instructions now considered safe (below the ERP) to

experience other types of exceptions or interrupts, prior work

LD ADD ADD SUB LD

ERP

…..

High-CCR Instruction

Low-CCR Instruction

Figure 6: Illustration showing how the flow of data between

instructions in a dependency chain is policed under Spec-

ShieldERP+.

has shown these to be ineffective in facilitating transient

execution attacks [12]. Per our threat model, it is sufficient to

consider only branch status and memory-related exceptions

in defining the ERP. This is because no other exception

provides transient access to memory/cache data outside

the legal control flow of the application. Canella et. al

[12] report finding no traces of transient execution past

traps and aborts. Divide-by-zero raises an exception but the

result register is set to ’0’ and no real values are leaked.

Results of unaligned memory accesses and segmentation

faults never reach transient execution. Likewise, transient

execution was not successful following an invalid op-code,

because exceptions raised early in the pipeline are handled

immediately before an entry is even created in the ROB for

the faulting instruction.

C. SpecShieldERP+: Aggressive Early Resolution

The last design we explore, called SpecShieldERP+, re-

laxes some of the security guarantees of SpecShieldERP by

allowing speculative data to be accessed by select instruc-

tions that cannot be used as covert channels. The goal is

to reduce performance impact by limiting the number of

delayed forwards of speculative data. SpecShieldERP+ is

designed to be used in systems for which we can prove

certain covert channels are not viable or systems that use

other methods to close select covert channels (e.g. the

cache).

Unlike SpecShieldERP, SpecShieldERP+ allows results

from instructions that have not yet passed the ERP to

selectively forward their results to consumers that we deem

to have low Covert Channel Risk (CCR). The prototype used

in our evaluation has been configured to have a high CCR

list which includes Loads, Stores and Branches–effectively

restricting the forwarding of data to these instruction classes

until the producer of that data is behind the ERP. This

would mitigate any attack that uses the cache as a covert

channel or requires control of branches (virtually all known

attacks). Depending on the architecture, type of instructions

supported, etc., a different CCR list could be constructed.
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ROB
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(commit)
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LD r0, mem(A)

ADD r2,r1,…

BNEZ r1,target1

SUB r3,r2,…
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1
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1
0
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…

0
0
0
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Figure 7: The ROB state at different time snapshots for a SpecShieldERP+ example.

Instructions are tagged with a CCR bit starting at the

Decode stage, using a firmware-programmable CCR Table

(Figure 1). The content of the table can be updated after the

processor is deployed if new vulnerabilities are discovered.

Figure 6 illustrates how data flow among instructions in

a dependency chain policed with SpecShieldERP+. In this

illustration, gray arrows represent dependencies, blue arrows

represent data forwarding and the dashed-line represents

where the flow of data must stop, assuming that all in-

structions in this chain have not currently reached the ERP.

In SpecShieldERP+, because we allow data forwarding to

any non-CCR dependents, the initial LD in this chain can

immediately forward to the ADD instruction. Forwarding

continues along the chain, until we encounter the first

dependent high-CCR instruction (second LD), at which point

result forwarding is halted at the immediate predecessor of

the CCR instruction (the SUB). Only when the SUB reaches

the ERP will it forward its result to the dependent LD
instruction.

Keeping track of instruction sources requires constructing

the forward execution slice for each Load instruction. One

option to implement this is to adopt a hardware-based

program slice tracking mechanism similar to that proposed

by Carlson et al. [28] for backward slices. The hardware

overhead for this solution however is nontrivial. We instead

choose a simpler approach for SpecShieldERP+, starting

from the observation that we do not need to keep track of

the source of the speculative data precisely. It is instead

sufficient to know if an instruction has received speculative

data or not. If it has, it is prohibited from forwarding its

results to high CCR instructions until it is early resolved or

committed. We use a simple form of taint propagation [29]–

[31] to keep track of which instructions handle speculative

data. Data produced by a speculative load is considered

tainted. An instruction that has at least one tainted operand

also becomes tainted and produces a tainted output. In order

to keep track of that state we add a “Taint” bit to each entry

in the ROB.

Figure 7 helps illustrate with an example how SpecShield-

ERP+ works. Figure 7(a) shows an instruction sequence in

the ROB in which the ERP is below a Load instruction.

The oldest Load in the ROB (LD r0, mem(A)) is already

marked as “early resolved.” When its data returns it can

immediately be broadcast and its dependent instruction (the

AND) woken up. The LD r1, mem(B) instruction, on the

other hand, is not resolved yet. In SpecShieldERP the result

of the load would only be forwarded to dependents when

early resolved. In SpecShieldERP+ however, we allow the

immediate forwarding of a load’s data to any low-CCR

dependent instructions. When the data for the LD r1,
mem(B) returns, the result is broadcast to all dependent

instructions. Since the LD is speculative and has not yet

reached the ERP, a Taint signal is broadcast along with the

data and the source address of the LD. Since the data is

“tainted”, only dependent instructions with their CCR bit

unset will update their source operand with the result of the

LD. Any dependent instruction with a CCR bit set, indicating

a high covert channel risk, will ignore the tainted result

for now. In the example in Figure 7(a), the result of the

LD is forwarded to the ADD instruction but not the BNEZ.

The ADD instruction is also marked as tainted by setting its

Taint bit, to indicate it has received speculative data. The

“forward pending” (FP) bit of the LD is set to indicate that

the result of the LD might still need to be forwarded to some

dependent instructions when it is safe to do so. The result

of the LD is stored in a register, but only forwarded to low

CCR dependents.

When the ADD instruction finishes execution (Figure

7(b)), its Taint bit is checked. If it is set, the result is broad-

cast along with a Taint signal to its low CCR dependents
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SpecShield Changes/Additions

OP1 OP2 DST CCR Ready Issued

Wakeup logic/Reservation StationsTagTaint

Figure 8: The Wakeup/Reservation Station logic with Spec-

Shield support.

(the MUL and SUB), and ignored by the high CCR ones (the

LD). The FP bit for the ADD, as well as the Taint bits of

the ADD low-CCR dependents (the MUL and SUB) are all

set. When the ERP is updated and the LD r1, mem(B)
is early resolved, its FP bit is checked. Since it had been

marked with “forward pending”, its result now needs to

be broadcast to any high CCR dependents – in this case

the BNEZ. This is accomplished by re-broadcasting the tag

of the LD, this time with the Taint signal unset. Since the

taint signal is unset all remaining dependent (high CCR)

instructions are woken up and allowed to access the result

of the LD from the register file. Note that, since the LD is

early resolved and its Taint bit is unset the BNEZ is not

marked as tainted.

Figure 7(c) shows that when the ADD is early resolved its

FP bit is checked and, since it is set, the result is forwarded

to the dependent LD addr(r2) instruction.

SpecShieldERP+ requires simple modifications to the

wakeup/select logic, as shown in Figure 8. In particular,

each reservation station entry has an extra CCR field that

mirrors the one in the ROB and is set when the instruc-

tion is renamed. Waking up dependent instructions involves

broadcasting the destination tags of the currently selected

instructions. Our design also broadcasts Taint signals to

indicate the taint state of the selected instructions. The

wakeup logic for each reservation station entry, in addition to

checking if the tag is a match for any of the source operands,

also checks the Taint signal as well as the CCR bit of the

instruction. If Taint=“1” and CCR=“1” the instruction is not

woken up, even if both input operands are available.

D. Multicore Impact

SpecShield is implemented within the processor core and

its effects are not visible to the cache hierarchy. Unlike prior

work [8], [9], SpecShield does not require modifications

that impact the cache hierarchy or the cache coherence

protocol. This makes SpecShield much easier to implement

in hardware.

V. METHODOLOGY

We used the gem5 [32] cycle-level simulator in full-

system mode, running a Linux operating system and modi-

fied out-of-order CPU model to implement the three Spec-

Shield designs summarized in Table III. Our simulations

were run with an Ubuntu 14.04 disk image, Linux v4.18.7

kernel and x86 ISA. Table II shows the CPU and cache

parameters used. SPEC2006 workloads [33] were used in the

evaluation with the reference input set. Results correspond

to simulations of the 10 most representative regions of

500 million instructions with an additional 100K instruction

warm-up phase, chosen using the SimPoint methodology

[34].

CPU Architecture
CPU Clock 2GHz LQ, SQ Entries 32
L1 ICache 32KB (4-way) IQ Entries 64
L1 DCache 32KB (8-way) BTB Entries 4096
L2 Cache 2MB (16-way) dTLB Entries 64
Issue Width 8 iTLB Entries 64
ROB Entries 192 FP Registers 256
Branch Predictor LTAGE Int Registers 256

Table II: Architectural configuration parameters.

Design Description
Baseline Conventional OoO forwarding
FENCE Serialization after every branch
SpecShieldSTL No load forwards until it is ready to commit
SpecShieldERP No load forwards until it reaches ERP
SpecShieldERP+ No instruction forwards to high CCR con-

sumers until it reaches ERP

Table III: Designs evaluated.

VI. EVALUATION

In this section we examine the performance impact of

SpecShield and analyze the implications of some of the

design trade-offs made in the three variants.

Figure 9 shows the relative performance of each Spec-

Shield design, summarized in Table III with respect to a

baseline using conventional OoO execution. We also include

the performance overhead of an implementation which se-

rializes execution after every branch. This approach follows

the conservative recommendation by hardware manufactur-

ers [35] to protect against transient attacks with the use of

explicit serializing instructions in the application to constrain

speculation.

A. Serialization

Serialization is a coarse-grained way to explicitly restrict

and constrain the amount of speculation a processor is able

to perform. When a serializing instruction is dispatched from

the issue queue into the pipeline, no other instructions may

begin execution until the serializing instruction has commit-

ted (reached the ROB head). Forcing the pipeline to serialize

on every branch can result in low resource utilization and

significantly degrade performance. This is evident from

Figure 9, where the slowdown for this approach (labeled
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Figure 9: Performance impact of SpecShieldSTL, Spec-

ShieldERP and SpecShieldERP+ relative to an unsecured

baseline.

FENCE) is shown to be 2.08× on average. Serialization

has a higher performance cost than all SpecShield variants,

including the very conservative SpecShieldSTL. FENCE

does outperform SpecShieldSTL in a few cases: namely

cactusADM, GemsFDTD, gromacs, hmmer and namd. This

can be explained by an application’s ratio of load instructions

(delayed by SpecShieldSTL) to branch instructions (seri-

alized by FENCE). For applications that have many more

loads than branches, serialization may be a better choice

than SpecShieldSTL.

B. SpecShieldSTL

SpecShieldSTL has an average performance overhead of

73% which, although quite large, is almost 4× lower than

FENCE serialization. SpecShieldSTL is very conservative in

forwarding data from loads to dependent instructions. Each

load instruction must wait until it reaches commit before it is

permitted to forward its data, which could leave dependent

instructions stalled for dozens or even hundreds of cycles.

The performance hit is worse for benchmarks that have

relatively low miss rates such as calculix, hmmer or gromacs,

which have less than 10 misses per 1K instructions. Since

for these applications most loads are hits, delaying their

resolution to commit has the highest performance impact.

The slowdown for the three applications is 2.68×, 2.32×
and 2.2×, respectively.

Applications with high miss rates (especially LLC misses)

such as lbm or milc exhibit a lower performance impact

because load misses already stall the pipeline considerably.

In many cases, a missing load will reach the head of the ROB

before its data returns, therefore suffering no additional stall

in SpecShieldSTL. In addition to being memory bound, lbm
also frequently stalls the pipeline due to contention in the

load/store queue. The frequent pipeline stalls hide the delays

caused by SpecShieldSTL.
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Figure 10: Average number of ROB entries from ERP to

commit.

C. SpecShieldERP

The SpecShieldERP design eliminates most of the over-

head of SpecShieldSTL by loosening the traditional defini-

tion governing when an instruction is no longer speculative

for the purpose of our threat model. Recall that the early

resolution point in the ROB is defined such that all older

branches are resolved and all older memory instructions have

had their physical address retrieved from the TLB with no

faults or exceptions.

1) Impact of Early Resolution: In order to evaluate the

opportunity created by the “early resolution” of instructions,

we measure the distance in number of instructions from the

ERP to the head of the ROB (commit point). This data is

shown in Figure 10 as a per benchmark average.

This metric allows us to quantify the opportunity for

earlier forwarding by measuring the window of instructions

which can take advantage of SpecShieldERP and Spec-

ShieldERP+. In other words, it is a measure of how much

earlier load results can be used, compared to SpecShieldSTL.

The calculix and GemsFDTD benchmarks illustrate well

how “early resolution” can translate into performance im-

provement. calculix and GemsFDTD have respective slow-

downs of 2.6× and 1.50× under SpecShieldSTL. These

benchmarks also have relatively large ERP-to-commit dis-

tances of 55 and 35 instructions, respectively. This can

be interpreted to mean that on average, 55 (35) of the

instructions in the ROB have reached the ERP and would

be allowed to forward their results with SpecShieldERP(+)–

resulting in a potentially significant performance improve-

ment. This is corroborated by the results in Figure 9, where

we see that the runtimes for calculix and GemsFTDT with

SpecShieldERP are now only 5% and 3% longer than the

baseline, respectively.

On the other hand, some benchmarks, such as astar, gcc
and mcf, have short ERP-to-commit distances of only 1-2 in-

structions. As a result, they benefit less from SpecShieldERP

compared to other benchmarks, but still exhibit a reduction
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Figure 11: Percentage of load instructions that have not

reached commit (early resolution) when requested data re-

turns and will therefore delay wakeup of dependent instruc-

tions in SpecShieldSTL and SpecShieldERP.

in overhead of 20%, 17% and 18%, respectively.

2) Performance Improvement: Overall, the performance

benefits of SpecShieldERP are substantial, reducing the

performance penalty to an average of 21% across all appli-

cations we examine, compared to 73% for SpecShieldSTL.

3) Impact of Delayed Wakeup: Figure 11 shows how

many loads delayed waking up their consumers after having

their data request satisfied by the memory system but had not

yet reached a point at which they can safely broadcast their

results – this is commit for SpecShieldSTL and the early

resolution point in SpecShieldERP. For SpecShieldSTL, we

can see that many loads must delay forwarding data to

dependents – as much as 97% for calculix and 84% on

average. The percentage of loads for SpecShieldERP leading

to stalls of dependents ranges from 8% for calculix to

64% for hmmer, with an average of 33%. The reduction

due to SpecShieldERP is substantial, and helps explain the

performance improvement. The percentage of delayed loads

is still high however, a good motivation for not blocking

the wake-up of all dependent instructions, as it is done in

SpecShieldERP+.

D. SpecShieldERP+

Figure 9 also shows SpecShieldERP+, which is our most

optimized design and seeks to improve upon SpecShieldERP

by eliminating unnecessary delayed wake-ups of consumer

instructions that can be classified as having a low covert

channel risk (CCR).

1) Performance Improvement: The performance improve-

ment of SpecShieldERP+ is significant, with now only

a 10% average penalty over the baseline, as Figure 9

shows. SpecShieldERP+ outperforms SpecShieldERP across

all applications. This is because the only instructions that

experience an additional delay in receiving data are the

high-CCR instructions (loads and branches). This limits the

number of stalled instructions reducing performance impact.
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Figure 12: Percentage of instructions impacted by delayed

wakeup due to dependencies on speculative data.

2) Benefits of Selective Early Wakeup: Figure 12 shows

the number of instructions delayed waiting on specula-

tive operands for each SpecShield design. As expected,

SpecShieldSTL leads to the most delayed instructions, an

average of 17% of the total number of instructions. The most

dramatic improvements are observed for SpecShieldERP+,

which reduces the fraction of stalled instructions to less

than 1.3% on average. This is because, by allowing early

forwarding of speculative data to low CCR instructions, we

allow additional instructions to execute without delay while

stalling only high CCR instructions.

E. Performance/Coverage Summary

For completeness, Table IV gives a summary of mitigation

overheads for existing software and hardware solutions, as

well as the channels each protects against leakage. Descrip-

tions of each of these defenses can be found in Section VIII.

We report average overheads for the software-based defenses

listed in Table IV from compiling SPEC2006 C applications

using Intel ICC (v19.0.3.206) with automated lfence
injection enabled [36], as well as CLANG (v.9.0.0) with

the Speculative Load Hardening [37] mitigation enabled.

Defense Overhead Benchmarks Channels
Protected

SW LFENCE [35] 144% SPEC2006 All
SLH [37] 108% SPEC2006 Cache
Invisispec [8] 22-78% SPEC2006 Cache
SafeSpec [9] -3% SPEC2017 Cache, TLB
DAWG [10] 1-15% PARSEC Cache
CS Fencing [38] 8-48% SPEC2006 Cache

HW Cond. Spec. [11] 7-53% SPEC2006 Cache
Select Delay [16] 11-46% SPEC2006 Cache
SpecShieldSTL 73% SPEC2006 All
SpecShieldERP 21% SPEC2006 All
SpecShieldERP+ 10% SPEC2006 Flexible

Table IV: Overhead of existing and proposed mitigation

solutions and channels they protect from leakage.
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exfiltrated value (0x54) 

(no cache hits) 

Figure 13: Access latency for each index of array a in

Listing 1, showing baseline (top) and SpecShieldSTL, ERP

and ERP+ (bottom).

VII. SECURITY ANALYSIS

In this section we analyze the security guarantees offered

by SpecShield and discuss the security/performance trade-

offs.

A. Empirical Results

To analyze the effectiveness of SpecShield in preventing

leakage through covert channels we simulated proof-of-

concept Spectre-v1 code in gem5, similar to the code shown

in Listing 1. Flush+Reload was used to recover the secret.

Figure 13 shows the empirical results averaged over 100

trials. In theory, the secret value will have the lowest access

latency of any index in the array, enabling us to decode its

value. The secret value is one byte wide, therefore the array

must have 256 indices to represent every possible value. The

top of Figure 13 shows the unsecure baseline. We can see

that there is only one index with an access latency less than

175 cycles; indeed, this index corresponds to the correct

secret value extracted from the victim process (0x54).

However, none of the SpecShield variants exhibits such

an outlier, as shown in the bottom of Figure 13. This shows

that our mitigation techniques are effective in shielding

speculative data from the covert channel.

B. Discussion of Isolation Properties

As Figure 2 shows, SpecShield isolates data retrieved

from the memory hierarchy through speculative load in-

structions from covert channel leakage. The degree of this

isolation varies with the design. However, all SpecShield

designs provide well defined security guarantees with respect

to that isolation.

SpecShieldSTL delays the use of data loaded by spec-

ulative instructions until Load instructions are committed.

Data cannot be accessed by any other instruction until the

Load retires. Any attack that attempts to speculatively load

data from an illegal memory address or from an illegitimate

control flow path will not be able to leak the speculative data.

Exception handling, permissions checks and branch resolu-

tion for each load and all older instructions is performed

before data use is allowed. As a result, SpecShieldSTL

guarantees that any data which is the result of a speculative

load instruction is isolated from any other instruction until

it is safe.

SpecShieldERP allows forwarding of data loaded by spec-

ulative instructions only when these instructions are older

than the ERP, which means they (and any older loads)

did not cause exceptions and are not part of misspredicted

control flow. While these instructions can still be squashed

by other exceptions, traps or aborts, transient execution

has been shown to halt after the faulting instruction or

return dummy values where no actual information is leaked

for these cases [12]. Therefore, the security guarantees of

SpecShieldERP are the same as SpecShieldSTL, because

only safe loads are allowed to forward data to dependent

instructions.

SpecShieldERP+ relaxes the security guarantees of Spec-

ShieldERP by allowing speculative data to be used by

instructions that are deemed to have a low covert channel

risk (CCR). As long as the classification of instructions

based on their CCR is accurate, SpecShieldERP+ is as secure

as SpecShieldERP. The potential additional vulnerability

of SpecShieldERP+ comes from the possibility that new

covert channels will be discovered for instructions classified

as having a low CCR. We manage this increased risk by

allowing firmware updates to reclassify instructions as high

CCR by updating the CCR table of a processor if new

vulnerabilities are discovered.

In the worst case, adding to the list of instructions which

must wait for data to become non-speculative with respect

to our definition could cause SpecShieldERP+ to degenerate

into SpecShieldERP. However, note that the performance

overhead of SpecShieldERP is already quite reasonable at

an average of 21%. SpecShieldERP+ allows the opportunity

to remove constraints imposed on forwarding data when they

are known to be unnecessary for a given micro-architecture.

This reduces performance impact further.

VIII. RELATED WORK

A. Software Mitigation Solutions

Various software solutions have been deployed in an

effort to mitigate the three initial Spectre and Meltdown

variants [36], [39]–[41]. A proposed Spectre-v1 (bounds-

check-bypass) mitigation is the insertion of a serializing

instruction (lfence) after any vulnerable section [36].

Speculative Load Hardening (SLH) [37] examined the use

of code transformations that inject data-dependencies and

masking operations around conditional branches as a miti-

gation to Spectre-v1. Other work focused on mitigating the

Branch Target Injection variant of Spectre through a hybrid

approach that combined microcode and system software [36]
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to allow flushing and disabling the branch predictor at run-

time. Turner et al. [24] considered a compiler-level steering

scheme that is also known as a return trampoline as a way

of isolating indirect branches. The kernel protection table

isolation (KPTI) solution was introduced as a mitigation for

Rogue Data Cache Load (Meltdown) [42].

B. Hardware Mitigation Solutions

Invisispec [8] develops a defense mechanism for the data

cache hierarchy, by removing observable side-effects from

the channel. This is accomplished by placing data from tran-

sient loads into a temporary buffer and bypassing the data

cache until it can be determined the load was not misspec-

ulated. This requires modifications to system components,

such as the cache coherence protocol, in order to detect

and revert execution in the event of missed invalidations

for data in the temporary buffer. Conditional Speculation

[11] again is an approach to protect the data cache from

leakage, blocking memory requests in the issue queue until

they are known to not be misspeculated. Sakalis et al.

[16] take a similar approach, blocking transient loads from

execution, but also incorporate value prediction in order

to hide miss latency. SafeSpec [9] proposes that separate

shadow structures for processor components be used during

transient execution. Transient state of instructions remain

in these structures until the outcome of the prediction is

known. During a misprediciton, transient results remain

invisible to the main CPU structures. The prototype evaluates

only shadowed set-associative structures such as the ITLB,

DTLB and caches. Context-Sensitive Fencing [38] explores

automatically injecting fences into the instruction stream

when necessary, focusing on preventing leakage from the

data cache. Barber et al. [43] proposed an initial idea for

a covert channel agnostic defense by delaying the use of

speculative data. The overheads for these countermeasures

are summarized in Table IV.

SpecShield takes a fundamentally different approach than

these prior works. SpecShieldERP blocks speculative data

from being used by any instruction. This removes the ability

to construct any covert channel to transfer this data into

the architectural state. SpecShieldERP+ offers the flexibility

to selectively guard against known or potential channels.

SpecShield is implemented within the processor pipeline,

requiring no changes to the cache hierarchy, coherence

protocol or memory consistency.

IX. CONCLUSION

Transient execution attacks have revealed fundamental

weaknesses in how modern processors handle speculative

data. This paper presents a first step towards isolating spec-

ulative data from any potential covert channels that could

be used to leak secret data during speculation. SpecShield

prevents the use of speculative data by other instructions

until doing so is determined to be safe. The most secure

version of the design, SpecShieldERP, eliminates transient

attacks at a cost of 21% average performance degradation.

The optimized version, SpecShieldERP+, which prevents the

propagation of speculative data to known or probable covert

channels, provides only slightly relaxed security guarantees

with a 10% performance impact. We also presented a mech-

anism for trading off performance for security, by allowing

designers to easily choose which instructions are considered

to have high covert channel risk.
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