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The roofline model is a popular approach for “bound and bottleneck” performance analysis. It focuses on
the limits to the performance of processors because of limited bandwidth to off-chip memory. It models
upper bounds on performance as a function of operational intensity, the ratio of computational operations
per byte of data moved from/to memory. While operational intensity can be directly measured for a specific
implementation of an algorithm on a particular target platform, it is of interest to obtain broader insights on
bottlenecks, where various semantically equivalent implementations of an algorithm are considered, along
with analysis for variations in architectural parameters. This is currently very cumbersome and requires
performance modeling and analysis of many variants.

In this article, we address this problem by using the roofline model in conjunction with upper bounds
on the operational intensity of computations as a function of cache capacity, derived from lower bounds on
data movement. This enables bottleneck analysis that holds across all dependence-preserving semantically
equivalent implementations of an algorithm. We demonstrate the utility of the approach in assessing funda-
mental limits to performance and energy efficiency for several benchmark algorithms across a design space
of architectural variations.

Categories and Subject Descriptors: B.4.4 [Hardware]: Input/Output and Data Communications—
Performance analysis and design aids; F.2 [Analysis of Algorithms and Problem Complexity]: General;
D.2.8 [Software]: Metrics—Performance measures

General Terms: Performance, Algorithms

Additional Key Words and Phrases: Operational intensity upper bounds, I/O lower bounds, architecture
design space exploration, algorithm-architecture codesign

ACM Reference Format:
Venmugil Elango, Naser Sedaghati, Fabrice Rastello, Louis-Noël Pouchet, J. Ramanujam, Radu Teodorescu,
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1. INTRODUCTION

Technology trends have resulted in widely different rates of improvement in compu-
tational throughput compared to data movement rates in computer systems. With
future systems, the cost of data movement through the memory hierarchy is expected

Authors’ addresses: V. Elango, N. Sedaghati, L.-N. Pouchet, R. Teodorescu, and P. Sadayappan, 2015 Neil
Avenue, Columbus, OH 43210; emails: {elangov, sedaghat, pouchet, teodores, saday}@cse.ohio-state.edu; F.
Rastello, Antenne Inria GIANT, DRT/LETI/DACLE - Batiment 51C - Bur. C424, Minatec Campus, 17 Rue
des Martyrs, 38054 GRENOBLE cedex; email: fabrice.rastello@inria.fr; J. Ramanujam, 2027E Digital Media
Center, Baton Rouge, LA 70803; email: jxr@cct.lsu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1544-3566/2015/01-ART67 $15.00

DOI: http://dx.doi.org/10.1145/2693656

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 67, Publication date: January 2015.

http://dx.doi.org/10.1145/2693656
http://dx.doi.org/10.1145/2693656
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2693656&domain=pdf&date_stamp=2015-01-09


67:2 V. Elango et al.

Fig. 1. Roofline model: performance and energy rooflines.

to become even more dominant relative to the cost of performing arithmetic operations
[Bergman et al. 2008; Fuller and Millett 2011; Shalf et al. 2011], in terms of both time
and energy. Therefore, optimizing data access costs will become ever more critical in
the coming years. Given the crucial importance of optimizing data access costs in scal-
able parallel systems, it is of great interest to develop techniques for understanding
performance limits dictated by data movement considerations.

The roofline model is an insightful visual “bound and bottleneck” model that focuses
on the performance-limiting impact of off-chip memory bandwidth. In its most basic
form, a performance roofline plot (explained in greater detail with Figure 1 in the next
section) consists of two straight lines that represent upper bounds on performance
due to the maximum computational rate of processor cores, and memory bandwidth,
respectively. The horizontal axis is the “operational intensity” (OI) of the computation,
defined as the ratio of number of computational operations performed per byte of data
moved between main memory and the processor. A code will be memory-bandwidth
limited unless OI is sufficiently high, greater than a “critical intensity” corresponding
to the point of intersection of the two rooflines.

Modeled or measured data volume between main memory and last-level on-chip
cache (LLC) for the execution of a code can be used to compute its OI and thus determine
whether or not it is in the bandwidth-limited region of the roofline model for a machine.
However, a significant issue is that the OI of an algorithm is not a fixed quantity, but
depends on the on-chip LLC capacity and the problem size, and is affected by how the
algorithm is implemented as well as the semantics-preserving code transformations
that may be performed. Thus, it is only straightforward to use a roofline model to
determine whether a particular implementation of an algorithm is bandwidth-bound
on a particular machine. But we are often interested in broader insights on performance
bottlenecks, where we wish to take into consideration potential transformations into
semantically equivalent forms or consider architectural variations in a design space.
But this is not easy. The standard approach to doing so requires performance modeling
and analysis of a large number of alternative implementation scenarios.

In this article, we present a new approach to use of the roofline model by deriving
upper bounds on OI from lower bounds on data movement. Since lower bounds on data
movement are schedule-independent, its use avoids the need to explicitly model and
analyze OI over a large number of mapping/scheduling scenarios. Lower bounds on data
movement complexity of algorithms (also called I/O complexity in the literature) were
first addressed by Hong and Kung [1981] using the model of the red-blue pebble game
in their seminal work. Hong and Kung’s model inherently allows recomputation of the
same operation multiple times. This is useful in modeling algorithms that perform
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recomputation of repeatedly used values rather than incurring the overhead of storing
and loading the data. However, the majority of practically used algorithms do not
perform any recomputation. Hence, several efforts [Ballard et al. 2011, 2012; Bilardi
and Peserico 2001; Bilardi et al. 2012; Scquizzato and Silvestri 2013; Ranjan et al. 2011;
Savage 1995, 1998; Savage and Zubair 2010; Cook 1974; Irony et al. 2004; Ranjan
et al. 2012; Ranjan and Zubair 2012] have modeled I/O complexity under a more
restricted model that disallows recomputation, primarily because it eases or enables
the derivation of possibly tighter I/O lower bounds. In Elango et al. [2013], we describe
an alternative approach for I/O lower bounds using graph min-cuts for the restricted
model (Section 2.3). We use this min-cut-based technique to derive the I/O lower bounds
(under the model that prohibits recomputation), and hence upper bounds on OI, for
different algorithms in Section 3. We then use this upper-bound-based characterization
in conjunction with the roofline model to capture the upper limits of performance of an
algorithm over a range of possible alternative architectural configurations for a given
VLSI technology. This article makes the following contributions:

—It derives tighter I/O lower bounds than previously known for some algorithms, using
the min-cut-based techniques (Section 3).

—It presents a new approach to use the roofline model along with bounds on the max-
imum possible OI for an algorithm as a function of cache size. This bound applies
to all possible valid schedules for the operations constituting the computation; that
is, the bound is a fundamental upper limit for OI, irrespective of any optimiza-
tion/transformation like loop tiling, fusion, and so forth.

—It uses the modeling of upper bounds on OI to enable the use of the roofline model in
algorithm-architecture codesign exploration across an architectural design space:

(1) It models the maximal achievable performance of different algorithms (opera-
tions per second) for a given VLSI technology, considering different fractional
chip area being allocated to cache versus cores (Section 5).

(2) It models maximal achievable energy efficiency (operations per joule) of different
algorithms for a given VLSI technology, considering variation in number of cores,
cache capacity, and voltage/frequency scaling (Section 6).

2. BACKGROUND

2.1. The Roofline Model

The roofline model [Williams et al. 2009] is a popular approach to bottleneck-bounds
analysis that focuses on the critical importance of the memory bandwidth in limiting
performance.

Performance Roofline: The performance roofline sets an upper bound on perfor-
mance of a computation depending on its operational intensity. Let W be the number
of operations (typically floating-point computations) that a particular implementation
of an algorithm performs and let q be the total number of bytes it transfers between
main memory and the processor. (Table I summarizes the parameters.)

The operational intensity of a computation is defined as the ratio between W and q,
that is, OI = W/q. The performance roofline model ties together the operational inten-
sity, peak floating-point performance, and memory performance in a two-dimensional
graph. The horizontal axis (in log scale) represents the operational intensity and the
vertical axis (in log scale) represents the attainable performance. The attainable per-
formance for an architecture depends on its peak floating-point performance and the
memory bandwidth and is given by

Upper bound on attainable performance = Min(Fflops , Bmem × OI).
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Table I. List of Symbols and Their Definitions

Symbol Description

S Size of the fast memory, e.g., cache (in words)
W Number of arithmetic operations of an

algorithm (in FLOP)
q Number of data transfers for a particular

implementation of an algorithm (in bytes)
Q Minimum number of data transfers of an

algorithm (in words)
OI Operational intensity (in FLOP/byte)
Fflops Peak computational rate (in GFLOP/s)
Bmem Peak memory bandwidth to LLC (GBytes/sec)

In its most basic form, a performance roofline model contains two intersecting straight
lines representing performance limits: a horizontal line at a height corresponding to
the peak computational performance of the core(s) and an inclined line with slope
corresponding to the peak memory-to-LLC bandwidth. This is shown in Figure 1(a).

The OI of a given implementation of an algorithm is typically computed using per-
formance counters by measuring the actual number of operations and the amount
of memory traffic during execution. In some cases, it may be possible to calculate OI
through manual reasoning. If we draw a vertical line (red and green lines in Figure 1(a))
at this value of OI, it intersects either the inclined line, indicating that the implemen-
tation is bandwidth-bound, or the horizontal line, indicating that the implementation
is compute-bound. For lower OI, the memory bandwidth is a fundamental limiting
factor, and achievable computational throughput cannot exceed the product of OI and
the memory bandwidth. As OI increases from zero, the upper bound on achievable
performance steadily increases, up to the point of intersection of the two lines. To the
right of the intersection point, OI is sufficiently high that the memory bandwidth is no
longer a fundamental constraint on achievable computational throughput.

Energy Roofline: The roofline model has recently been adapted [Choi et al. 2013;
Choi et al. 2014] to capture upper bounds on energy efficiency, that is, operations/joule,
as a function of OI. For a particular OI, the energy cost of at least one memory access
must be expended for every OI computational operations. The minimal energy cost for
performing a set of W operations is the sum of the energy cost for actually performing
the W arithmetic operations and the energy cost for W/OI memory operations. Figure
1(b) shows the energy roofline for the same architecture as the performance roofline
(in Figure 1(a)). The energy roofline is smooth since the total energy is the sum of
compute and data movement energies, in contrast to execution time, which is bounded
by the larger of the data movement time and compute time (since data movement and
computation may be overlapped).

Given a particular algorithm, for example, the standard O(N3) algorithm for matrix-
matrix multiplication, there exist many semantically equivalent implementations of
the algorithm. For example, the standard triple-loop matrix multiplication algorithm
allows for six possible permutations of the three loops—all produce exactly the same
results but will generally incur a different number of cache misses and achieve different
performance. A loop transformation like loop tiling produces semantically equivalent
code that incurs fewer cache misses and hence achieves improved performance. In
terms of the roofline model, the different semantically equivalent implementations of
the standard matrix multiplication algorithm will clearly have different values of OI—
all versions have exactly the same number of executed operations but differing amount
of data transfer between main memory and cache. As elaborated in the next subsection,
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Fig. 2. Single-sweep two-point Gauss-Seidel code.

an algorithm can be abstracted by a computational directed acyclic graph (CDAG),
and different semantically equivalent implementations of the algorithm (e.g., different
loop permutations for triple-loop matrix multiplication) correspond to different valid
schedules for execution of the primitive operations abstracted as vertices in the CDAG.
Each valid schedule has a corresponding OI based on the number of data transfers
between main memory and LLC. In general, finding the schedule with the highest
possible OI would require analysis of a combinatorially explosive number of schedules.
In contrast, with the approach we develop in this article, a single parametric expression
can be developed for an upper bound on OI for a regular CDAG as a function of the size
of LLC. The upper bound captures all possible valid schedules for the CDAG, including
all tiled versions of the code, considering all possible tile sizes.

2.2. Upper Bounds on Operational Intensity via Lower Bounds on Data Movement

The range of possible values of OI for a particular algorithm has inherent upper limits
for any given capacity of LLC. The upper bound on attainable OI for a computation is
inversely related to the lower bound on the minimum number of data elements that
must be moved between main memory and cache in order to execute all operations of
an algorithm. If the number of operations W is invariant across different execution
scenarios to be considered (including dependence-preserving program transformations
and change in the cache capacity), maximizing OI is equivalent to minimizing the
amount of data transferred between main memory and cache. The problem of finding
lower bounds on the minimal required data movement in a memory hierarchy has
been studied in the literature [Hong and Kung 1981; Aggarwal and Vitter 1988; Ag-
garwal et al. 1987; Irony et al. 2004; Bilardi et al. 2000; Bilardi and Peserico 2001;
Savage 1995, 1998; Ranjan et al. 2011, 2012; Valiant 2011; Demmel et al. 2012; Bal-
lard et al. 2011, 2012; Christ et al. 2013; Solomonik et al. 2013; Savage and Zubair
2010], where the term I/O lower bound is often used to refer to a data movement lower
bound.

Consider the code shown in Figure 2(a) that performs (N −2)2 arithmetic operations.
Figure 2(b) shows a functionally equivalent form of the same computation, after a
tiling transformation. The tiled form too has exactly the same number of arithmetic
operations ((N − 2)2). Next, let us consider the data access cost for execution of these
two code forms on a processor with a single level of cache. If the problem size N is
larger than cache capacity, the number of cache misses would be higher for the untiled
version (Figure 2(a)) than for the tiled version (Figure 2(b)). But if the cache size
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were sufficiently large, the tiled version would not offer any benefits in reducing cache
misses.

Thus, unlike the operation count of an algorithm, which stays unchanged for different
valid orders of execution and is also independent of machine parameters like cache size,
the data access cost depends both on the cache capacity and on the order of execution
of the operations of the algorithm.

In order to model the range of valid scheduling orders for the operations of an
algorithm, it is common to use the abstraction of the CDAG (Definition 2.1), with a
vertex for each instance of each computational operation, and edges from producer
instances to consumer instances. We use the notation of Bilardi and Peserico [2001] to
describe the CDAG model:

Definition 2.1 (CDAG). A CDAG is a 4-tuple C = (I, V, E, O) of finite sets such that
(1) I ⊂ V is the input set and all its vertices have no incoming edges, (2) E ⊆ V × V is
the set of edges, (3) G = (V, E) is a directed acyclic graph, (4) V \I is called the operation
set and all its vertices have one or more incoming edges, and (5) O ⊆ V is called the
output set.

The vertices V of a CDAG C = (I, V, E, O) are not restricted to binary operations
and, hence, can have zero or more predecessors corresponding to the operands of the
respective statements in the original code. Figure 2(c) shows the CDAG for the codes
in Figure 2(a) and Figure 2(b), for N = 4; although the relative order of operations
is different between the tiled and untiled versions, the set of computation instances
and the producer–consumer relationships for the flow of data are exactly the same (the
special “input” vertices in the CDAG represent values of elements of A that are read
before they are written in the nested loop).

The Red-Blue Pebble Game: The seminal work of Hong and Kung [1981] was the
first to develop an approach to bounding the minimum data movement in a two-level
hierarchy, among all possible valid execution orders, of the operations of a CDAG. The
inherent I/O complexity of a CDAG is modeled as the minimal number of I/O operations
needed in playing the red-blue pebble game described next. This game uses two kinds
of pebbles: a fixed number of red pebbles that represent locations in a small, fast local
memory (could represent cache, registers, etc.) and an arbitrarily large number of blue
pebbles that represent large, slow main memory.

Definition 2.2 (red-blue pebble game [Hong and Kung 1981]). Let C = (I, V, E, O) be
a CDAG such that any vertex with no incoming (resp. outgoing) edge is an element of I
(resp. O). Given S red pebbles and an arbitrary number of blue pebbles, with an initial
blue pebble on each input vertex, a complete calculation is any sequence of steps using
the following rules that results in a final configuration with blue pebbles on all output
vertices:

R1 (Input). A red pebble may be placed on any vertex that has a blue pebble (load
from slow to fast memory).

R2 (Output). A blue pebble may be placed on any vertex that has a red pebble
(store from fast to slow memory).

R3 (Compute). If all immediate predecessors of a vertex of V \ I have red pebbles,
a red pebble may be placed on (or moved to) that vertex (execution or “firing” of
operation).

R4 (Delete). A red pebble may be removed from any vertex (reuse storage).
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The number of I/O operations for any complete calculation is the total number of moves
using rules R1 or R2, that is, the total number of data movements between the fast
and slow memories. The inherent I/O complexity of a CDAG is the smallest number of
such I/O operations that can be achieved among all possible complete calculations for
that CDAG. An optimal calculation is a complete calculation achieving the minimum
number of I/O operations.

While the red-blue pebble game provides an operational definition for the I/O com-
plexity problem, it is generally not feasible to determine an optimal calculation on
a CDAG. Hong and Kung [1981] developed a novel approach for deriving I/O lower
bounds for CDAGs by relating the red-blue pebble game to a graph partitioning prob-
lem, called S-partitioning, and proved I/O lower bound results for several CDAGs by
reasoning about the maximum number of vertices that could belong to any vertex set
in a valid 2S-partition.

Lower Bounds on Data Movement for Parallel Execution: So far, the discus-
sion of data movement complexity has been restricted to sequential computation. But
the model can be extended to reason about data movement bottlenecks for parallel
execution of a program on a shared-memory multicore system, as done by Savage and
Zubair [2008] and Elango et al. [2014]. Savage and Zubair [2008] proposed the Multi-
processor Memory Hierarchy Game (MMHG) that models data movement in a shared
storage hierarchy with a common shared level of memory that can be accessed by all
processors. MMHG can be used to model lower bounds on the volume of data movement
at different levels of the cache hierarchy for a shared-memory multiprocessor. We re-
mark that using an upper bound on OI using the MMHG model can only lead to lower
or equal value for OI upper bounds, compared to using the traditional RB game and
modeling only the LLC. Using just the standard RB game and the LLC capacity indeed
gives valid upper bounds on OI for any parallel execution because the volume of data
movement between main memory and LLC due to the collective operations of all cores
is only dependent on LLC capacity and not the schedule of execution, whether sequen-
tial or parallel. We would simply be ignoring the data movement between higher-level
caches by doing so. Thus, although in this article we limit our analysis to a single LLC
shared across cores for reasons of simplicity, all performance and energy efficiency
bounds we obtain are necessarily valid upper bounds to those that might be obtained
using the same methodology with more detailed modeling of the different levels of the
cache hierarchy and the MMHG game.

2.3. Min-Cut-Based I/O Lower Bound

In Elango et al. [2013], we developed an alternative lower bounding approach. It was
motivated from the observation that the Hong and Kung 2S-partitioning approach
does not account for the internal structure of a CDAG, but essentially focuses only
on the boundaries of the partitions. In contrast, the min-cut-based approach captures
internal space requirements using the abstraction of wavefronts. This section describes
the approach. This approach is used later in Section 3 to derive OI upper bounds for
different algorithms. The central idea is the definition of two kinds of wavefronts and
the relation between these:

Definitions: Given a graph G = (V, E), a cut (S, T ) is defined as any partition of
the set of vertices V into two disjoint subsets S and T = V \S. An s-t cut is defined
with respect to two distinguished vertices s and t and is any (S, T ) cut satisfying the
requirement that s ∈ S and t ∈ T . Each cut defines a set of cut edges (the cut-set), that
is, the set of edges (u, v) ∈ E, where u ∈ S and v ∈ T . Given any cut edge e = (u, v), the
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vertex u is called a cut vertex. The set of cut vertices is called the cut-vertex-set. The
capacity of a cut is the cardinality of its cut-vertex-set.

Given a DAG G = (V, E) and some vertex x ∈ V , the set Anc(x) is the set of vertices
from which there is a nonempty directed path to x in G (x �∈ Anc(x)); the set Desc(x) is
the set of vertices to which there is a nonempty directed path from x in G (x �∈ Desc(x)).
Using these two notations, a convex cut or a convex partition is defined as follows:

Definition 2.3 (Convex cut or convex partition). Given a graph G = (V, E) and a
vertex x ∈ V , a convex cut or a convex partition (Sx, Tx) associated to x is an s-t cut
with the following properties:

(1) x ∪ Anc(x) ⊆ Sx.
(2) Desc(x) ⊆ Tx.
(3) E ∩ (Tx × Sx) = ∅.

A convex cut with minimum capacity is called a convex min-cut.

Schedule Wavefront: Consider a complete calculation P that corresponds to some
scheduling (i.e., execution) of the vertices of the graph G = (V, E). We view this complete
calculation P as a string that has recorded all the transitions (applications of pebble
game rules). Given P, we define the wavefront WP (x) induced by some vertex x ∈ V at
the point when x has just fired as the union of x and the set of vertices that have already
fired and that have an outgoing edge to a vertex v ∈ V that has not yet been fired. With
respect to a complete calculation P, the set WP (x) defines the memory requirements at
the timestamp just after x has fired.

Correspondence with Graph Min-Cut: Note that there is a close correspondence
between the wavefront WP (x) induced by some vertex x ∈ V and the (Sx, Tx) partition
of the graph G. Given a convex partition (Sx, Tx) of G, we can construct a complete
calculation P in which at the timestamp when x has just fired, the subset of vertices
of V that have already been fired exactly corresponds to Sx; the set of fired vertices
that have a successor that is not fired constitute a wavefront WP (x) associated with x.
Similarly, given a wavefront WP (x) associated with x in a pebble game instance P, we
can construct a valid (Sx, Tx) convex partition by placing all fired vertices in Sx and all
the nonfired vertices in Tx.

A minimum cardinality wavefront induced by x, denoted Wmin
G (x), is a convex min-cut

that results in an (Sx, Tx) partition of G defined earlier. We define wmax
G as the maximum

value over the size of all possible minimum cardinality wavefronts associated with
vertices, that is, define wmax

G = maxx∈V (|Wmin
G (x)|).

LEMMA 2.4. Let C = (∅, V, E, O) be a CDAG with no inputs. For any x ∈ V , Q ≥
2(|Wmin

G (x)|−S ). In particular, Q ≥ 2(wmax
G −S ), where Q is the number of I/O operations

for the optimal calculation of C.

3. OPERATIONAL INTENSITIES OF ALGORITHMS

In this section, we develop expressions for upper bounds on OI for four algorithms
as a function of storage capacity—matrix multiplication (MM), fast Fourier transform
(FFT), conjugate gradient (CG), and 9-point 2D Jacobi computation (J2D). The OI
upper bounds are used in the following sections for architecture-algorithm codesign
exploration. The upper bounds on OI for MM and CG are obtained using previously
known I/O lower bounds, while we derive new I/O lower bounds for FFT and J2D using
the min-cut-based approach (Section 2.3). In modeling OI in operations per byte, we
assume the data to be double precision occupying 8 bytes per word and each red/blue
pebble to have a capacity of one word.
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3.1. Matrix-Matrix Multiplication (MM)

The standard matrix-matrix multiplication algorithm has an operation count, W = 2N3

for the product of N × N matrices. Irony et al. [2004] showed that the minimum I/O
cost Q for MM satisfies Q ≥ N3

2
√

2S
for S red pebbles. Hence, the operational intensity OI

satisfies OI ≤ 2N3

N3/(2
√

2S)
= 4

√
2S FLOP/word, or 0.5

√
2S FLOP/byte.

3.2. Fast Fourier Transform (FFT)

The N-point FFT (of height log(N)) has an operation count of 2N log(N). The following
theorem develops an I/O lower bound for FFT using the min-cut approach discussed in
Section 2.3.

THEOREM 3.1 (I/O LOWER BOUND FOR FFT). For an N-point FFT graph, the minimum
I/O cost, Q , satisfies

Q ≥ 2N log(N)
log(S )

,

where S is the number of red pebbles.

PROOF. Consider a CDAG for an FFT of size m (with no input vertices). Consider a
complete calculation P with minimum I/O and the timestamp at which the first output
vertex (i.e., vertex with no successors) o is fired in P. Let S be the vertices already
fired strictly before o, and T the others. As o is an output vertex, S contains all the m
input vertices. By construction, T contains all the m output vertices, and hence, the
corresponding wavefront, |WP (o)| ≥ m.

Now, a CDAG for an N-point FFT (of height log(N) with the input vertices removed)
can be decomposed into disjoint sub-DAGs corresponding to m-point FFTs (and of height
log(m)). This gives us �N/m� × �log(N)/log(m)� full sub-CDAGs. From Lemma 2.4,
the I/O cost of each sub-FFT is at least 2 × (m− S ). If we consider m = S log(S ),

Q ≥
⌊

N
S log(S )

⌋
×

⌊
log(N)

log(S log(S ))

⌋
× 2

(
S log(S ) − S

)
≥

(
N − S log(S )

S log(S )

)
×

(
log(N) − log(S log(S ))

log(S log(S ))

)
× 2

(
S log(S ) − S

)
≥

(
N − S log(S )

S log(S )

)
×

(
log(N) − log(S log(S ))

log(S log(S ))

)
× 2

(
S log(S )

) − O
(

N log(N)

log2(S)

)

≥ N log(N)

S log2(S )
× 2(S log(S )) − O (N) − O

(
N log(N)

log2(S)

)

≥ 2N log(N)
log(S )

− O
(

N log(N)

log2(S)

)
.

Finally, from the operation count and the I/O complexity for FFT, we obtain the
upper bound on the operational intensity, OI ≤ 2N log(N)

(2N log(N))/(log(S)) = log(S) FLOP/word, or
0.125 log(S ) FLOP/byte.

3.3. Conjugate Gradient (CG)

Many compute-intensive applications involve the numerical solution of partial differen-
tial equations (PDEs), for example, solving a heat equation on a two-dimensional plate.
The first step in numerical solution of such problems involves discretization, where the
continuous domain is reduced to discrete points at regular intervals. The problem is
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Fig. 3. Conjugate gradient method.

then solved only at these discrete points, called a computational grid. Solution to such
discretized problems involves solving a system of linear equations at each time step
till convergence. Additional details regarding this process can be found in Elango et al.
[2014, Section 5.1]. These linear systems, of the form Ax = b, are typically made of
banded sparse matrix A with a repetitive pattern. Hence, in practice, the elements of
A are not explicitly stored. Instead, their values are directly embedded in the program
as constants, thus eliminating the space requirement and the associated I/O cost for
the matrix.

The conjugate gradient method [Hestenes and Stiefel 1952] is one of several popular
methods to iteratively solve such linear system. CG maintains three vectors at each
time step—the approximate solution x, its residual r = Ax − b, and a search direction
p. At each step, x is improved by searching for a better solution in the direction p. Each
iteration of CG involves one sparse matrix-vector product, three vector updates, and
three vector dot-products. The complete pseudo-code is shown in Figure 3.

The I/O lower bound for CG was derived in Elango et al. [2014] using the min-cut
approach. We state the theorem next. The complete proof can be found in Elango et al.
[2014, Theorem 8].

THEOREM 3.2 (I/O LOWER BOUND FOR CG). For a d-dimensional grid of size Nd, the
minimum I/O cost, Q, to solve the linear system using CG satisfies Q ≥ 6NdT , when
Nd 
 S , where T represents the number of outer loop iterations.

Considering a two-dimensional grid (d = 2), we obtain an operation count of 20N3T
and hence an upper bound on OI of OI ≤ 20/6FLOP/word, or 0.417FLOP/byte.

3.4. 9-Point Jacobi 2D (J2D)

We consider the Jacobi computation that computes at time step t the value of every
point of an N × N array A in terms of its nine neighbors at time step t − 1 as follows:

A[i][j] = (B[i-1][j-1] + B[i-1][j] + B[i-1][j+1]
+ B[i][j-1]
+ B[i][j] + B[i][j+1]+ B[i+1][j-1]
+ B[i+1][j] + B[i+1][j+1] )*cnst;

THEOREM 3.3 (I/O LOWER BOUND FOR JACOBI 2D). For the 9-point Jacobi of size N × N
with T time steps, the minimum I/O cost, Q , satisfies

Q ≥ 0.75
N2T√

S
,

where S is the number of red pebbles.
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PROOF. Jacobi 2D has a three-dimensional iteration space of size N2 × T . Consider
a partition of the iteration space with cubes of size (2m+ 1)3. We have �N/(2m+ 1)�2 ×
�T/(2m+ 1)� such cubes. For each cube, let x be the vertex at the center of the cube.
The set of ancestors of x contains the lower face of the cube. The set of descendants of
x contains the upper face. We have disjoint vertical paths connecting each point in the
lower face with a point in the upper face of the cube. Any wavefront must cut this set of
vertical paths. Hence, the wavefront just after firing x contains at least the number of
points present in a horizontal face of the cube, that is, (2m+1)2. From Lemma 2.4, the I/O
cost of each cube is then 2((2m+1)2−S ). Considering all �N/(2m+1)�2×�T/(2m+1)� such
cubes, we get a total I/O cost of �N/(2m+1)�2 ×�T/(2m+1)�×2((2m+1)2 −S )−|I|+|O|.

By setting m = √
S ,

Q ≥
⌊

N

2
√

S + 1

⌋2

×
⌊

T

2
√

S + 1

⌋
× 2((2

√
S + 1)2 − S )

≥
(

N − 2
√

S

2
√

S + 1

)2

×
(

T − 2
√

S

2
√

S + 1

)
× (6S + 8

√
S + 2)

≥
(

N − 2
√

S

2
√

S + 1

)2

×
(

T − 2
√

S

2
√

S + 1

)
× 6S

≥
(

N

2
√

S + 1
− 1

)2

×
(

T

2
√

S + 1
− 1

)
× 6S

≥
(

N2T

(2
√

S)3

)
× 6S − O

(
N2

√
S

+ NT√
S

)

≥ 0.75
N2T√

S
− O

(
N2

√
S

+ NT√
S

)
.

The 9-point Jacobi has an operation count of 9N2T . Hence, we obtain an upper bound
on operational intensity, OI ≤ 12

√
SFLOP/word, or 1.5

√
SFLOP/byte.

4. ARCHITECTURE DESIGN SPACE EXPLORATION

In the next two sections, we show how an analysis of upper bounds on OI of an algorithm
as a function of cache size can be used to model the limits of achievable performance
as well as energy efficiency. We perform two types of analysis:

—For a particular set of technology parameters, what are the upper bounds on achiev-
able per-chip performance (GFLOP per second) for different algorithms, considering
a range of possible ways of dividing the chip’s area among processor cores versus
cache memory (Section 5)?

—For a given set of technology parameters, what are the upper bounds on energy
efficiency (Giga-operations per joule) for different algorithms (Section 6)?

In this section, we provide details on how various architectural parameters were
chosen for the analysis.

4.1. Notation

We consider a chip with a fixed total area A, where a portion α.A, of the total area is used
for the last-level cache and the remaining area, (1−α).A, is allocated to cores. While such
an analysis could be directly extended to model constraints with respect to multiple
levels of cache, we only model the impact of the LLC in this analysis. Also, we do not
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Table II. Notation Used in Architecture Design Space Exploration

A, Total chip area
α.A, Area occupied by LLC
(1 − α).A, Area occupied by cores
f Clock frequency (GHz)
P Number of cores
S Last-level cache size in words
πcpu Static leakage power per core
πcache Static leakage power for cache of size S
εflop Energy per arithmetic operation at frequency f
εmem Energy per byte of data access from/to memory

account for the area required for interconnects and other needed logic. It is important
to note that since our modeling is purely an upper-bound analysis on performance and
energy efficiency, the results obtained are of course valid under these simplifications:
including more details of the architecture can allow tighter bounds, but all results
presented later in this section are assertable upper limits on performance and energy
efficiency for the modeled technology. For example, when the analysis shows that large-
FFT (size too large to fit in LLC) performance cannot exceed 60 GFLOP/s aggregate
performance for a multicore chip built using the modeled technology, it represents an
upper bound that cannot be exceeded by any possible actual implementation with those
technology parameters. A more detailed model that accounts for additional levels of
cache, on-chip interconnect, control logic, and so forth may serve to tighten or reduce the
upper bound to a lower value than 60GFLOP/s but cannot invalidate the conclusions
drawn from the more simplified analysis.

The following valid simplifications are made to make the analysis easier: non-core
and I/O clock frequencies are assumed to be fixed, interconnects are not considered in
the analysis, and LLC is considered to be shared by all the cores.

In our architectural design space exploration, the number of cores, P , and the total
number of locations in the LLC, S , are directly related to the total die area A, and the
parameter α trades off one for the other. Fflops (f ) varies with the clock frequency f .

Performance. The total computation time T follows the roofline model and can be
expressed as

T = max
(

W
P .Fflops (f )

,
8 × Q
Bmem

)
= max

(
W

P .Fflops (f )
,

W
Bmem .OI (S )

)
. (1)

For a given application, W can be expressed in terms of problem size parameters,
and lower bounds on Q (in words) can be expressed through our analysis in terms of S .
As an example, for matrix multiplication we have W = 2N3, Q ≥ N3

2
√

2S
+ 3N2.

Energy. The total energy consumption is modeled as

E = W.εflop(f ) + 8Q.εmem + (P .πcpu + πcache (S )).T , (2)

where the quantities used are defined in Table II.

4.2. Architectural Parameters

We demonstrate the utility of modeling upper bounds on operational intensity by per-
forming an analysis over possible architectural variations for a given technology. We use
architectural parameters for an enterprise Intel Xeon processor (codename Nehalem-
EX) [Rusu et al. 2009] and use the published and available statistics to estimate area,
power and energy for different compute and memory units.
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Table III. Nehalem-EX Processor Spec

Parameter Value

Die size 684mm2

Node technology 45nm
Num of cores 8
Num of LLC slices 8
LLC slice size 3MB
LLC size (total) 24MB
DRAM channels 4
Core voltage 0.85–1.1V
Core max clock 2.26GHz
TDP 130W
Threads per core (SMT) 2
Leakage (total) 21W
L1/L2 32KB/256KB

Table IV. Nehalem-EX Die Dimensions

Unit Width (mm) Height (mm) Area (mm2) Area (%)

Die 31.9 21.4 684 100
Core 7.2 3.7 26.7 3.9
LLC slice 7.8 3.7 29.3 4.3

Table V. Modeled LLC Slices Using CACTI [Muralimanohar et al. 2009]

Size (KB) H (mm) W (mm) Area (mm2)

4 0.341 0.912 0.311
8 0.368 0.912 0.336
16 0.472 0.966 0.456
32 0.580 1.010 0.586
64 0.815 1.015 0.827
128 0.848 2.032 1.723
256 0.870 4.060 3.532
384 1.096 4.066 4.456
512 2.798 2.778 7.773
1,024 4.632 2.800 12.970
2,048 5.080 5.138 26.101
3,072 7.446 5.353 39.858
4,096 5.859 9.173 53.745
8,192 9.518 9.791 93.191

Table III shows the physical specifications for a testbed CPU. Using the die dimen-
sions, and by processing the die photo, we computed the area (in mm2) for the chip-level
units of interest. For this study, we model core area, which includes private L1 and L2
caches. We also model a range of values for the shared LLC.

Table IV shows the extracted dimensions for the Nehalem-EX core and LLC. In order
to explore LLC with different sizes, we used CACTI [Muralimanohar et al. 2009]. We
fixed LLC design parameters based on the chip specification, varying only the size of
the cache.

Table V shows the modeled cache sizes and their corresponding area (from CACTI).
Using the area percentage for each unit and the reported total leakage power for the
chip (21W, or 16%), we modeled the static power consumed by each core on an area-
proportional basis.
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Table VI. Nehalem-EX: Effect of Changing Voltage and Frequency on Core/Chip Power

Voltage (V) Clock (MHz) Peak Chip Dyn (W) Peak Core Dyn (W)

1.10 2,260 111.14 102.68
1.05 2,060 95.94 87.49
1.00 1,860 81.82 73.35
0.95 1,660 62.23 60.78
0.90 1,460 58.12 49.66
0.85 1,260 48.39 39.93

In order to model dynamic power per core, we used McPAT [Li et al. 2009], an analyt-
ical tool to model the CPU pipeline and other structures. To estimate core parameters,
we extended the available Xeon model to allow for a larger number of cores. All modi-
fications were based on real parameters published by Intel [Rusu et al. 2009]. In order
to model the impact of voltage/frequency scaling on energy efficiency, we extracted the
maximum and minimum operating voltage for the processor and the corresponding
frequencies at which the processor can operate. Using those V/F pairs, different “power
states” were modeled for the processor using McPAT [Li et al. 2009]. Table VI shows
how changing voltage and frequency affects total chip and core power.

Finally, we summarize the parameters for the testbed architecture used for the
modeling in the next sections: Fflops (f ) = 9.04GFLOP/s @ 2.26GHz, Bmem = 40GB/s,
A,= 684mm2, A,core = 26.738mm2, εflop(f ) = 1.3nJ/flop, εmem = 0.63nJ/byte, πcpu =
0.819W. Each core, which includes private L1/L2 caches, occupies around 4% of the
total die area. For a very small value of α, a maximum of 25 cores would fit on the chip.
At the other extreme, for α of 0.95, only one core can be put on the chip and an LLC
cache of 64MB could be accommodated.

5. ALGORITHM-ARCHITECTURE CODESIGN: BOUNDS ON PERFORMANCE

In this section, for different algorithms, we consider the implications of upper bounds
on OI on the maximal performance (operations per second) achievable on a chip. As
described in the previous section, we assume that the chip area can be partitioned as
desired among processor cores or cache. As shown later for four demonstration bench-
marks, the upper bound on OI for an algorithm can be modeled as a monotonic nonde-
creasing function of cache size. As the fractional chip area occupied by LLC increases,
the upper bound on OI increases. But simultaneously, the fractional area usable for
cores decreases, so that fewer cores may be placed on the chip. As shown next, a col-
lection of rooflines can be used to capture the architecture design space. Alternatively,
we show that the collective data can be captured in a single multiroofline plot.

The size of the LLC was varied from a tiny 4KB size (representing a fraction of un-
der 0.1% of the chip of approximately 700mm2 area) to 64MB (filling almost the entire
chip area). For demonstration purposes, we analyze four algorithms: matrix multi-
plication (MM), fast Fourier transform (FFT), conjugate gradient (CG), and 9-point
2D Jacobi (J2D) iterative linear system solvers. In all these cases, the problem sizes
were assumed to be much larger than LLC, when OI is essentially independent of the
problem size, as per the analysis in Section 3. The following upper bounds were obtained
for OI, in FLOP/byte, as a function of cache capacity (S words), for double-precision
data occupying 8 bytes per word.:

—MM: 0.5
√

2S
—FFT: 0.125 log(S)
—CG: 0.417 (it is independent of cache capacity)
—J2D: 1.5

√
S
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Fig. 4. Operational intensity upper bounds as a function of α.

Fig. 5. Upper bounds on performance for different choices of α.

Figure 4 shows the variation of upper bounds on OI as a function of fractional chip
real estate used for cache, assuming double-precision data occupying 8 bytes per word.
It may be seen that the trends for MM and J2D are similar, while those of the remaining
two are very different. MM and J2D show a significant increase in OI as the fraction
of chip area occupied by cache is increased (the plot is logarithmic on the y-axis). FFT
shows a very mild rise in OI as the cache fraction is increased, and the OI is low—
between 0.5 and 2 over the entire range. CG has a flat and very low value of OI (0.42),
irrespective of the amount of cache deployed.

Figure 5 shows four roofline plots for four specific values of α: 0.01, 0.25, 0.5, and
0.95, respectively. In each case, the vertical lines are placed at the upper bound on
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Fig. 6. Upper bounds on performance.

OI for the four algorithms and intersect either the inclined bandwidth roofline or the
horizontal processor-peak roofline.

At a very small value of α of 0.01, the size of LLC is very small and a maximal number
of cores (25) can be put on the die. So the horizontal roofline is at a performance of
226GFLOP/s (9.04*25). The OI values of the four benchmarks—CG, FFT, MM, and
J2D—with this configuration are 0.41, 2.0, 181.02, and 384.0, respectively. CG and
FFT are bandwidth-bound, although not to the same extent, while MM and J2D are
not bandwidth-bound.

When α is increased to 0.25, the number of cores that can be placed on the chip
decreases, causing a lowering of the horizontal roofline. The OI values increase for
FFT, MM, and J2D, while they are unchanged for CG. Compared to α of 0.01, the
performance upper bound for FFT increases because the intersection with the band-
width roofline occurs further to the right. But for MM and J2D, the performance upper
bounds decrease despite a higher OI, since the horizontal roofline has dropped due to
fewer cores. It is interesting to note that the trends as a function of α are in opposite
directions for FFT and MM.

Figure 6 shows a single combined roofline plot that captures the variation of upper
bounds on performance for the entire design space of configurations of the chip, that is,
over the range of possible values of α. The plot represents a consolidated analysis that
takes into account the interdependence between the size of LLC and the maximum
number of cores—the larger the LLC is, the less the remaining area on the chip for
cores. The value of α determines how many cores can be placed on the chip. With the
parameters of the chosen technology detailed in the previous section, each core occupies
a little under 4% of the chip area. The horizontal rooflines corresponding to four values
of α are shown in the figure, intersecting with the bandwidth roofline (corresponding to
40GB/sec). Four instances of horizontal rooflines are shown in the figure, tagged with
the value of α and corresponding number of cores.

The results for the three benchmarks—MM, FFT, and CG—show disjoint ranges of
OI. CG has no variation in OI as a function of S. Its OI of 0.417 leads to an upper
bound of 16.7GFLOP/s (0.417*40GB/sec). Since each core has a peak performance of
9.04GFLOP/s for the modeled technology, CG is bandwidth-bound for any number of
cores greater than one. But if α is 95%, we can only put one core on the chip, and the
upper bound is 9GFLOP/s. Thus, the two red dots in the multiroofline plot capture the
entire range of possibilities as alpha is varied: 9GFLOP/s when P = 1 (α is above 0.93)
and 16.7GFLOP/s when P ≥ 2.
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For FFT, the upper bound on OI ranges from 1.125 to 2.875 over the range of α from
1% to 95%. At α = 1%, OI = 1.125, and the performance upper bound is 45GFLOPs, and
the computation is severely bandwidth bound—the 25 cores that could be put on chip
for this value of α would be heavily underutilized. As α is increased, the upper bound
on performance improves and hugs the bandwidth roofline. But when α goes above
75% and the number of cores drops below six, the algorithm becomes compute-bound
because the peak computational performance is lower than 40 ∗ OI (S).

MM has a range (as the size of the LLC is varied) that is always in the compute-
bound region of the roofline. But as the LLC size is increased, the number of cores on
chip must decrease, and the performance upper bound drops at very high values of OI.

Jacobi 2D follows the same trend as that of MM and is always in the compute-bound
region. Hence, the performance of J2D for different values of α is exactly equal to that
of MM, even though J2D has higher OI than MM.

The analysis shows that two currently widely used algorithms, FFT and CG, will not
be well suited for solution of very large problems relative to the cache capacity unless
the bandwidth between main memory and cache is substantially increased relative to
representative parameters of current systems.

Analysis of lower bounds on data movement and upper bounds on OI can be similarly
carried out for any level of the storage hierarchy—including data movement between
cache and registers, or disk and main memory. The bounds for any level can be ob-
tained by appropriately setting the value of “S.” In this article, we have focused on the
data movement between the memory and on-chip LLC to aid in deriving bounds on
performance for algorithm-architecture codesign because off-chip memory bandwidth
is often a critical performance bottleneck. The presented methodology can, however, be
similarly applied to identify potential bottlenecks at other levels of the cache hierarchy.

The lower bounds on data movement and the corresponding upper bounds on OI
are inherent fundamental limits that cannot be overcome. We note that although the
presented analysis has made several simplifying assumptions, the upper bounds on per-
formance can be asserted to hold even when any simplifying assumptions are removed
and more accurate information is used. For example, if information about area occupied
by interconnects is added, the total number of cores and the total LLC cache size will
go down but not increase. Hence, all observations on upper bounds on performance
will still be valid. Interconnects may add latencies and also bandwidth constraints, but
they will not invalidate any of the earlier conclusions on performance upper bounds
for the modeled technology parameters. Similarly, although in reality full overlap of
computation and communication is not feasible, and perfect scaling of performance
with increase in the number of processors is also generally infeasible, those best-case
assumptions do not invalidate any of the conclusions on upper limits of achievable
performance over the architectural configuration space. For example, for the modeled
architectural parameters, the analysis indicates that achievable performance for large
CG and FFT computations (that cannot fit within LLC) will necessarily be far below
system peak, irrespective of the amount of effort put into the implementation, be-
cause fundamental inherent data movement limits of those computations cannot be
overcome.

6. ALGORITHM-ARCHITECTURE CODESIGN: BOUNDS ON ENERGY EFFICIENCY

An important metric is energy efficiency, defined as the ratio of number of executed
operations to the energy expended in the execution. The upper bounds on OI can also be
used to bound the maximum achievable energy efficiency. The total energy of execution
is modeled as the sum of energy for performing the operations, the energy for data
movement from DRAM access, and an additional component for the static leakage
energy in the cores and cache. Figure 7 shows the variation in the upper bounds on
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Fig. 7. Upper bounds on energy efficiency.

energy efficiency for MM, FFT, CG, and J2D as a function of (1) number of cores used,
(2) the voltage and clock frequency used, and (3) the capacity of LLC.

The horizontal axis marks three different clock frequencies (2,260MHz, 1,860MHz,
and 1,460MHz), representing voltage/frequency scaling, and for each of the frequencies,
five choices of processor count (one, two, four, eight, and 16). Different curves correspond
to different capacities of the LLC. The overall trends are as follows:

(1) For all four benchmarks, the groups of clustered lines move upward as we go
from left to right on the charts, representing a decrease in the voltage/frequency.
For a fixed number of cores and LLC capacity, lower frequencies lead to higher
bounds on attainable energy efficiency. This is because there is a nonlinear de-
crease in the core’s energy per operation (energy is proportional to V 2 f , and voltage
and frequency are linearly related, so that energy is proportional to f 3) as volt-
age/frequency are decreased. There is also an increase in the total static leakage
energy since the computation will take longer to complete, but there is an overall
reduction in the lower bounds for energy, or an increase in the upper bounds on
energy efficiency.

(2) Increasing the number of cores (with fixed frequency and LLC) is detrimental
to energy efficiency, especially for bandwidth-bound computations. This is seen
clearly for FFT and CG, with each of the lines curving downward as the number
of processors is increased. This effect is mainly due to the increased static energy
for the active cores. While additional cores can divide the parallel work among
themselves, the computation rate is limited by the rate at which data is delivered
from memory to cache, so that there is no reduction in the lower bound for execution
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time. For MM and J2D, the curves are relatively flat since the computation is
compute-bound. Using more cores enables the work to be done faster, and there is
no increase in the total static leakage energy aggregated over all cores: using twice
as many cores halves the lower bound on execution time and doubles the static
leakage power of the cores.

(3) Increasing LLC capacity has two complementary effects: (i) potential for improving
energy efficiency by increasing OI due to the larger cache, but (ii) decreased energy
efficiency due to higher static leakage energy from the larger cache.

There is no useful benefit for CG since its OI is independent of cache capacity.
At larger cache sizes, there is a detrimental effect (not seen in the charts since
the cache sizes used were quite small). For FFT, the benefits from improved OI
clearly outweigh the increased static leakage energy. For MM and J2D, although
OI increases with cache size, it is already so high at the smallest cache size that
the incremental benefits in reducing data transfer energy from main memory are
very small. Hence, the curves representing different cache sizes for fixed frequency
do not have much separation.

We next characterize the maximal possible energy efficiency for the four benchmarks,
if we have the flexibility to choose (1) the number of cores to be turned on, (2) the amount
of cache area to be used, and (3) voltage/frequency at which the cores are to be run.
From Equations (1) and (2), we have the energy efficiency

Eeff = W
E

=
(

εflop(f) + εmem

OI(S)
+ P.πcpu + πcache(S)

min
(
P.Fflops(f), Bmem.OI(S)

)
)−1

. (3)

Depending on the upper bound on the OI of the algorithms, we analyze different
cases next and determine what is the best configuration for the architecture to obtain
maximum energy efficiency.

Case I: The algorithm is completely bandwidth-bound.
This corresponds to the case where the maximal OI(S) of the algorithm for a given

cache size S is too low that it is bandwidth bound even on a single core at its lowest
frequency. We can see from the performance roofline viewpoint that this leads to the
condition Bmem.OI(S) < Fflops(f). With increasing frequency, εflop(f) increases and thus
the energy efficiency deteriorates. Hence, the highest energy efficiency is achieved when
P = 1 and f is set at its minimum, and Equation (3) reduces to Eeff = (εflop(fmin)+ εmem

OI(S) +
πcpu+πcache(S)

Bmem.OI(S) )−1, where fmin is the minimum allowable frequency for the architecture.

Case II: The algorithm is compute-bound with p or fewer cores and at all frequencies.
From Equation (3), we can see that at any given frequency f, increasing P im-

proves the Eeff. Hence, P = p is the best choice irrespective of the frequency.
Also, with increasing f, Fflops(f) increases linearly, while εflop(f) increases superlin-
early. For a fixed value of p, the optimal energy efficiency is dependent on the ma-
chine parameters like πcache(S) and εflop(f). The maximal energy efficiency is obtained,
Eeff = maxf∈[fmin,fmax](εflop( f )+ εmem

OI(S) +
p.πcpu+πcache(S)

p.Fflops(f)
)−1, where fmin and fmax are the minimum

and maximum allowable frequencies for the architecture, respectively.

Case III: The algorithm is compute-bound with p cores at lower frequencies and
becomes bandwidth-bound with p cores at higher frequencies.

Let fcutoff be the frequency where the algorithm transitions from a compute-bound
to a memory-bound region. For the region where f ≥ fcutoff, from case I, we know
that once the algorithm becomes bandwidth-bound, increasing the frequency further
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Fig. 8. Upper bounds on energy efficiency.

has a detrimental effect on the energy efficiency. Hence, the best energy efficiency is
achieved when f = fcutoff, where p.Fflops(fcutoff) = Bmem.OI(S). When f < fcutoff, analysis
in case II showed that in the compute-bound region when the number of cores, p, is
held constant, optimal frequency depends on the machine parameters. Also, we have
p.Fflops(f) < Bmem.OI(S). Hence, Eeff = maxf∈[fmin,fcutof f ](εflop( f ) + εmem

OI(S) + p.πcpu+πcache(S)
p.Fflops(f)

)−1.

Case IV: The algorithm is compute-bound at all frequencies with p cores and becomes
bandwidth-bound with q = p + 1 or a higher number of cores.

This case gives rise to two scenarios: (1) Performance at higher frequencies
(fp ∈ [f1, fmax]) with p cores overlaps with the performance at lower frequencies
(fq ∈ [fmin, f2]) with q cores, and hence, the algorithm becomes bandwidth-bound at
frequencies f > f2 and q cores. (2) There is a gap between maximum performance
achievable with p cores and minimum performance achieved with q cores, that is,(
q.Fflops(fmin) − p.Fflops(fmax)

)
> 0. In both these scenarios, the maximum achievable

energy efficiency depends on the machine parameters.
Similar to the performance roofline in Figure 6, an energy multiroofline has been

plotted for the four benchmarks in Figure 8 with a range of OI corresponding to the
range of LLC sizes for our testbed architecture. Unlike the case for the performance
multiroofline, the actual set of energy roofline curves are not shown in the figure
because there are too many of them and they would clutter the graph; in addition to
different values of α, we also consider different core frequencies, resulting in a different
energy roofline for each combination.

Figure 8 shows a similar trend for the energy efficiency as that of the performance in
Section 5. MM and J2D are always compute-bound and hence fall under case II for all
values of S . For MM and J2D, optimal energy efficiency was generally achieved at the
lowest frequency value on the testbed. But, as the number of active cores approached
one (as the size of LLC increases), maximum energy efficiency was achieved at higher
frequencies. On the other hand, CG becomes bandwidth bound as the number of active
cores for the given LLC size exceeds three. Hence, CG starts at case IV with P = 3, and
as the LLC size increases (and the number of allowable cores goes below three), it enters
into case II. CG has the best upper bound on energy efficiency of 0.373GFLOP/J for the
cache size of 4KB with three cores at 1.26GHz. The upper bound on energy efficiency
for FFT initially increases with increasing cache size and then starts decreasing for
similar reasons as that of the performance upper bounds. FFT achieves its maximum
energy efficiency for the cache size of 8MB at P = 10 and f = 1.26GHz.
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7. RELATED WORK

Williams et al. [2009] developed the roofline model that attempts to analyze bottlenecks
in performance of an architecture due to memory bandwidth limits. Choi et al. [2013]
and Choi et al. [2014] developed the energy version of the roofline model. Czechowski
et al. [2011] developed balance principles for algorithm-architecture codesign. These
models characterize algorithms using operational intensity, which, however, is not a
fixed quantity for an algorithm-architecture combination. Our work complements the
previous efforts. Lipshitz et al. [2013] considered the energy efficiency at the algorith-
mic level and proved that a region of perfect strong scaling in energy exists for matrix
multiplication and the direct n-body problem. They also address the problem of finding
the minimum energy required for a computation given a maximum allowed runtime
and vice versa.

Several efforts have focused on developing I/O lower bounds, which is equivalent to
the problem of finding upper bounds on operational intensity. Hong and Kung [1981]
provided the first characterization of the I/O complexity problem using the red/blue
pebble game and the equivalence to 2S-partitioning of CDAGs. Several works followed
Hong and Kung’s work on I/O complexity in deriving lower bounds on data accesses
[Aggarwal and Vitter 1988; Aggarwal et al. 1987; Irony et al. 2004; Bilardi et al. 2000;
Bilardi and Peserico 2001; Savage 1995, 1998; Ranjan et al. 2011, 2012; Valiant 2011;
Demmel et al. 2012; Ballard et al. 2011, 2012; Christ et al. 2013; Solomonik et al. 2013;
Savage and Zubair 2010]. Aggarwal and Vitter [1988] provided several lower bounds
for sorting algorithms. Savage [1995, 1998] developed the notion of S-span to derive
Hong-Kung style lower bounds, and that model has been used in several works [Ranjan
et al. 2011, 2012; Savage and Zubair 2010]. Irony et al. [2004] provided a new proof of
the Hong-Kung result on I/O complexity of matrix multiplication and developed lower
bounds on communication for sequential and parallel matrix multiplication. Ballard
et al. [2011, 2012], Demmel et al. [2012], and Solomonik et al. [2013] have developed
lower bounds as well as optimal algorithms for several linear algebra computations
including QR and LU decomposition and the all-pairs shortest-paths problem. Bilardi
et al. [2000] and Bilardi and Peserico [2001] developed the notion of access complexity
and related it to space complexity. Also, Bilardi et al. [2005] developed an analysis of
the tradeoffs between bandwidth, memory, and processing for QCD computation and
derived guidelines to design a machine for QCD computation.

Extending the scope of the Hong and Kung model to more complex memory hier-
archies has also been the subject of research. Savage [1995] provided an extension
together with results for some classes of computations that were considered by Hong
and Kung, providing optimal lower bounds for I/O with memory hierarchies. Valiant
[2011] proposed a hierarchical computational model that offers the possibility to reason
in an arbitrarily complex parameterized memory hierarchy model. In a recent paper,
we [Elango et al. 2014] extended the parallel model for shared-memory architectures by
Savage and Zubair [2008] to also include the distributed-memory parallelism present
in all scalable parallel architectures. The works of Irony et al. [2004] and Ballard
et al. [2011] modeled communication across nodes of a distributed-memory system.
Bilardi and Preparata [1999] developed lower-bound results for communication in a
distributed-memory model specialized for multidimensional mesh topologies.

8. CONCLUSION

The roofline model is very useful in depicting bounds on time efficiency (operations
per second) and energy efficiency (operations per joule) of a computation on a machine
as a function of operation intensity, the ratio of computational operations per byte of
data moved from/to memory. While operational intensity can be measured for a given
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implementation of an algorithm, it is not a fixed quantity. It is a function of cache capac-
ity and also depends on the schedule of operations; that is, it is affected by semantics-
preserving code transformations. Therefore, understanding fundamental performance
bottlenecks for an algorithm generally requires analysis of many alternatives.

In this article, we have proposed an approach to use upper bounds on operational
intensity, derived from schedule-independent lower bounds on data movement, in or-
der to enable effective bottleneck analysis using the roofline model. We have used the
approach to model upper bounds on performance and energy efficiency across an ar-
chitectural design space considering different voltage/frequency scaling and different
fractions of die area being allocated to last-level cache versus cores.
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