
A Pattern-Based API for Mapping Applications to a Hierarchy of
Multi-Core Devices

Jia Guo

Computer Science and Engineering

Ohio State University

Columbus OH 43210

Email: guo.980@osu.edu

Radu Teodorescu

Computer Science and Engineering

Ohio State University

Columbus OH 43210

Email: teodores@cse.ohio-state.edu

Gagan Agrawal

Computer and Cyber Sciences

Augusta University

Augusta GA 30912

Email: gagrawal@augusta.edu

Abstract— Recent years have witnessed an evolution of In-
ternet of Things (IoT) devices. This has lead to the emergence
of (related) paradigms of Edge/Fog computing, where the goal
is to exploit the power of interconnected heterogeneous devices
together with distributed/cloud computing. In Edge/Fog com-
puting, one of the challenges is automatically distributing the
work between different devices to reduce application latency. At
the same time, with increasing transistor density and the end of
Denard scaling, even small edge devices have parallelism. Thus,
we need a programming model that can help distribute the work
between different devices and yet parallelize operations on each
device.

Motivated by the popularity of MapReduce(-like) frame-
works, we develop a pattern-based high-level programming
API targeting computer vision applications for the Edge/Fog
paradigm with parallelism within devices. Based on this API,
parallelization, workload distribution, and optimizations that
account for resource limitations of IoT devices, are imple-
mented. Our evaluation with three image processing applica-
tions shows that while using a single device, we achieve 17-45%
speedup over OpenCV, one of the most popular frameworks for
image processing. In addition, we further gain benefits from
distributing the work between multiple devices.

I. INTRODUCTION

This work is motivated by two popular trends. First, with
increasing transistor density and the end of Dennard scaling,
parallelism has become extremely common. While standard
desktops have been multi-core for more than a decade now,
Smartphones like IPhones and Android phones commonly
have 4 and 8 cores, respectively. In recent years, small edge
devices like a Raspberry Pi or NXP’s i.MX 8M Nano also
have 4 cores. For example, Raspberry Pi 3 B, a single-board
computer, has quad-core 64-bit ARM v8 processor, which
is able to complete complicated tasks such as robot control
on its own. Clearly, exploiting such parallelism is crucial
for applications that have substantial computing and/or data
processing requirements.

The second trend is towards Internet of Things (IoT) and
emergence of applications that target such an environment.
With the rapid development of smart devices and wireless
technologies in recent years, paradigms of Edge or Fog
computing have emerged. The idea is to use the edge to
cloud continuum of processing devices for applications on
IoT. Bonomi, et al. [5] and Iorga et al. [15] give a detailed
description of the structure and applications of Edge/Fog

computing. Some of the key considerations can be summa-
rized as:

• Heterogeneity: The devices in Edge/Fog computing are
of very different processing capabilities, ranging from
small sensors to cloud resources.

• Hierarchical Structure: Hierarchical structure is sup-
ported in Edge/Fog environment, different layers from
edge to center function as a continuum, and multiple
edge devices are likely to connect to a single more
powerful device (See Figure 1).

• Predominance of Wireless Access: At the edge of the
network, sensors and devices are mostly connected by
a wireless network.

• Need for Low Latency: Many applications executed
on such environments are interactive and require (near)
real-time response. In general, we can say that reducing
the latency of response is an important consideration.

Overall, development of applications for the Edge/Fog
computing paradigm is presenting new challenges. With edge
devices like a Raspberry Pi having substantial computing
power, instead of using such devices only for collection and
forwarding of information, it is more reasonable to fully
utilize Pi’s computing power and schedule a certain fraction
of the workload at the edge of network. At the same time,
it is important to exploit parallelism within each device or
node. Because scheduling of operations may not occur until
the runtime, application stages should be written so that they
can be efficiently parallelized on different types of devices.
As stated above, the range of processing devices available
differ considerably in their architecture and size of resources.

Though there has been several efforts on developing
programming APIs for edge/fog paradigms [14], [27], [31],
the work does not consider automatic partitioning of work
between the devices, or parallelization of processing within a
device. In this paper, we focus on developing a pattern-based
high-level programming API for the Edge/Fog environment
and applications we characterized above. The pattern based
API is a generalization of what has been very successfully
done with MapReduce and its implementation in frameworks
like Hadoop and Spark [36]. Our work builds on top of a
variant of MapReduce [16], [33], which has much better
efficiency and lower memory requirements. Moreover, unlike
previous work with MapReduce/Spark, in this paper, our
focus is on image processing applications. In these problems,

11

2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID)

978-1-7281-6095-5/20/$31.00 ©2020 IEEE
DOI 10.1109/CCGrid49817.2020.00-92

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Topology of a Hierarchical IoT System

a stream of images are collected from edge devices and
processed in a distributed fashion in an hierarchical structure
of devices. One common use case involves smart cameras
connected to a local PC and/or a cloud server. The smart
camera itself can have substantial computing power, however,
the processing power of the devices closer to the edge of
network tends to be lower than those at the center. Thus,
the challenge is to design an API that enables parallelism
on different devices, splitting of work across devices, and
optimizations that involve knowledge of both application and
specific type of system.

The contributions of this work are:

• API Design: We propose a set of high-level pattern-
based APIs to describe image processing and reduction
operations, which enables parallelization and optimiza-
tion of applications on different platforms.

• Parallelization of Operations: We are able to parallelize
our target applications on both an edge device (Rasp-
berry Pi) and a normal multi-core desktop/node.

• Optimizations for Specific Devices: We optimize the
processing considering the resources on the device.
For example, caching of intermediate applications can
help improve performance, but such caching has to be
cognizant of difference in memory availability between
devices of different types.

• Distribution of Work Between Devices: By recognizing
how certain operations are independent of each other,
processing is automatically split between edge devices
and a normal PC.

Using our framework, we have implemented three popular
image processing applications. Some of the key results from
our detailed evaluation are as follows. First, when comparing
against OpenCV, one of the most popular image processing
frameworks, we obtain a speedup of 17-45%, while par-
allelizing the same code on different devices. Second, we
further improve performance by over 20% by dividing the
processing between edge devices and a central device, as
compared to simply processing all data at the central device.
It should also be noted that we are able to parallelize the
same code on devices with different hardware architectures
and computing capabilities.

II. API DESIGN

As stated in the previous section, our goal is to have a
simplified programming API for distributed environments

where the work is to be distributed across devices with
very different capabilities, with all or most of them having
parallelism. We particularly build on top of success of frame-
works like Smart [33] and Spark [36], which allow complex
applications to be specified using high-level and simple
primitives. However, unlike these works, we are focusing
on image processing applications common in IoT scenarios,
and we want to obtain high performance as well. Towards
the latter goal, we use OpenMP and Posix Sockets at the
back-end to support efficient implementation of functions.
Additionally, Intel SSE and ARM Neon are also used to
optimize the code in several places.

In this section, we describe the API we have developed.
Table I describes the set of functions supported in our frame-
work. They can be viewed as a set of operators applied to an
image/data point. Broadly, one can think of the processing
as a series of operators applied one after another to an image
or a (set of) pixels. Data parallelism is enabled within the
execution of each operator, and task/pipelined parallelism
is enabled when one strong device (e.g. PC) is processing
intermediate results concurrently from multiple child devices.

The first set of functions are based on the MapReduce
idea. However, for better performance and lower memory
requirements, we use a variant. Specifically, unlike functional
idea of MapReduce, a reduction structure is provided for
the users to implement MapReduce-like processing. This
structure is first introduced by Jiang et al. [16], and improved
by Wang et al. [33] as a C++ based MapReduce alternate.
In our previous works, the implementations of this idea
have been shown to be efficient, both in terms of execution
time and memory. Specifically, a comparison with Spark
has shown up to 92× speedup [33]. Following work [13]
shows that this major improvement comes from reduced
intermediate result size and improved locality, as is crucial
for small devices. In the image processing scenario, it can
be applied to several application stages, as we will discuss
in the next section.

This reduction-style processing structure comprises three
functions: genKey, accumulate, and merge, working on a
reduction object class. A reduction object is essentially a
user-defined accumulator for intermediate results to merge
on. For example, in histogram application, it is defined as a
counter for the votes associated with a specific bin(s). As for
the three functions, Listing 1 illustrates the implementation
of a histogram-like reduction procedure using this API. In
the genKeys stage (line 3-8), runtime takes ids[] as keys to
access all the histogram bins related to an input data chunk.
Then in the accumulate stage (line 11-40), each pixel votes
to corresponding bins in histogram. Finally, all histograms
from different threads are collected and merged to one final
output with the merge function (line 36-39). At the back-end,
the framework maintains a hash-map of keys to reduction
objects. The process of reduction works as following. For
each element of input, a key (or multiple keys) is generated
by genKey, based on which the element is accumulated
to corresponding accumulator(s). The genKey-accumulate
process happens in parallel for input elements. After all the
inputs are processed, the accumulators of different threads
are merged to a final result. Two additional functions truncate

12

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

V : general data
M : image matrix
C: co-coordinates

K: key
Seq < A >: a list of elements of type A

f : functions defined in framework
Acc < K >: Accumulator of tuple with the same key

< A,B >: a tuple of type A and B

genKey V → K (Seq < K >) Generate one (or multiple) key(s) K for each input element V
accumulate < K,V > ×Acc < K >→ Acc < K > Accumulate an input pair < K,V > to the accumulator Acc < K > corresponding to K
merge Acc1 < K > ×Acc2 < K >→ Acc1 < K > Merge two accumulators with the same K to the first accumulator Acc1 < K >
filter V → Bool Generate a boolean to decide whether a given input element V should be filtered
count Seq < V >→ Long Count the number of data elements in a sequence Seq < V >
transform V → V ′ Perform flexible user-defined operation to transform one element to another element
sample M × double→M Sample an image M with a sampling factor double
window M × f × Seq < C >→ V Perform operation f on a sequence of windows defined by Seq < C > in image M
pyramid M × sample× Seq < double >→ Seq < M > Generate a pyramid representation for M based on the sample function and a sequence of factors
convolution M × C → V Perform a convolution on the given coordinate C in image M

TABLE I: Functional Description of the API

and emission are also provided so that the user can define
how the input should be divided to elements and when the
reduction result can be emitted. This reduction process can
happen in local device or extended to the distributed version.

The count and filter are operators provided simply to count
the number of data points and filter them out, respectively.
The transform operator transforms the images/data points
sequentially into another data type. Users can define flex-
ible procedures such as SVM classification process in this
operator. Sample is an operator to down-sample images by
a given factor.

One non-trivial operator we introduce is the window
operator, where the goal is to enable parallelism for sliding
window operations with caching capability. Specifically, to
use this operator on an image, a sequence of window
coordinates and the operations to apply on the windows
needs to be defined. In implementing this, the framework will
concurrently invoke the operations on a set of windows. This
set can either comprise a single queue of windows, which are
to be processed concurrently (with synchronizing barriers);
or could comprise several queues where windows in the same
queue are strictly processed sequentially. These two patterns
enable flexible scheduling of operations that are based on
sliding windows, while enabling potential optimizations that
will be discussed later.

Another non-trivial operator is Pyramid, which takes an
instance of sample operator and a list of down-scaling
factors. These down-scaling factors are used to produce a
sequence of down-scaled images, which can be processed
in parallel. This operator meets the need of popular image
processing applications, as we will describe in the next
section. Our implementation also uses this framework to
divide the work between different types of devices.

The last set of operations is as follows. The convolution
operator is used to apply a predefined convolution kernel on
an image or inside a window. The communication between
devices in our framework follows an edge to center pattern.
Two functions, upstream and broadcast, are defined to push
intermediate images/data points to the parent device or
broadcast necessary configurations in Json format to the
children devices. A key observation in the IoT topology
we defined in I is that the most powerful devices and user

interfaces are in the center of the topology; therefore, merge
and emission of results almost always happens at the center
or parent. This implies a unidirectional propagation of results
and a top-down broadcast of control messages, which can be
described by these two functions.

III. APPLICATIONS

In this section, we introduce three applications that our
framework supports and optimizes for the IoT scenario.
They are all object detection algorithms, though they all use
different types of features: Haar-like features [17], [26], HOG
(histogram of gradient) features [8], and LBP (local binary
pattern) [23], respectively. Our goal here is to show how
the APIs introduced in the last section can support these
applications.

In each of these three applications, the first few steps are
quite similar. Periodically, raw images are retrieved from
either the camera modules or local image files. These images
are sampled and converted to gray-scale format. In our
framework, these steps are simple implementation of filter
and transform functions. After these steps, a multi-scale
down sampling is performed, which will be elaborated later
in Section IV-A. On top of the above pre-processing, a sliding
window detector is applied to detect the target objects in
different parts of the image. This sliding window detector,
which is essentially a pre-trained 0/1 classifier inspecting
each window (or, region of interest, ROI) of height×width
in the original image, consists of two components: feature
extraction and classification. In the following discussion, we
will first give a brief description of three feature extraction
techniques associated with the applications and their imple-
mentation in our framework. Towards the end of this section,
we show how the classification step is implemented.

A. Feature Extraction
Feature extraction is the process of converting an ROI to

lower dimensional vectors. The three features we mentioned
above, Haar-like, LBP, and HOG, are widely used for object
detection, as they are available through popular libraries
like OpenCV, Scikit-Image, and others. The advantages of
using these features are that they are easy to train with
relatively small amount of data and the inference process
is not resource-intensive either. Thus, besides being very

13

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

popular for object detection, they are also a good choice
for edge devices.
Haar-like: Haar-like feature extraction is developed by Pa-
pageorgiou et al. [26], and enhanced by Jones et al. [17].
This feature extraction algorithm performs convolution in
a given ROI using Haar-like features, which are a set of
rectangular convolution kernels (shown in Figure 2). The
evaluation of these convolutions are accelerated by a 2-D
integral image, with which the sum of pixels in a rectangular
area (x1, x2]× (y1, y2] can be calculated conveniently with
the equation

Sum = I[x2, y2] − I[x1, y2] − I[x2, y1] + I[x1, y1]

Then the convolution can be easily evaluated by multiplying
corresponding weights to the summation of pixels in the
kernel-specified rectangular areas.

The implementation of integral image calculation and con-
volution operation in our framework is though transformation
API and convolution functions, respectively. The transform
API converts the original image to integral images. The
weight in each Haar-like kernel and the convolution process
is defined using the convolution API. One of the key aspects
of our work is that we facilitate result reuse across adjacent
windows, as will be discussed in Section IV-B.
HOG: The HOG feature extraction is proposed by Dalal, et
al [8]. To calculate the HOG features of an ROI, we first
calculate the X and Y gradient of each pixel as

dx = p[x+ 1, y]− p[x− 1, y]

dy = p[x, y + 1]− p[x, y − 1]

with which we can get the magnitude and direction of the
gradient of each pixel by

|d| =
√
d2x + d2y

θ =
dx√

d2x + d2y

Then for each (non overlapping) 8×8px cell, we calculate
from all 64 pixels a histogram as shown in the bottom right
of Figure 3, where the direction of gradient is split into 9
bins, and the vote of each pixel is decided by corresponding
magnitude of gradient. On top of this, all neighbouring 2×2

Fig. 2: Haar-like features

Fig. 3: HOG feature cells, blocks, and ROI

Fig. 4: MB-LBP feature illustration

cells are grouped as blocks (two adjacent blocks have 50%
overlap), as shown in Figure 3). In each block, 4 histograms
of cells are concatenated and normalized as the block feature.
In the end, all the features of blocks whose top left cells lie in
the given ROI are concatenated as the final ROI-level feature
for classification.

A normal implementation of this procedure contains
4 nested loops. But with appropriate loop unrolling and
caching, it can be implemented in our framework using
two reduction structures. As shown in the high level code
Listing 1, the first reduction structure (line 1-40) concurrently
calculates the gradient in different cells, during which the
direction and magnitude of gradient result will be instantly
accumulated to the corresponding histogram of each block
(line 15-30). In the second reduction structure (line 42-45),
the normalized feature vector for each block is calculated
and cached based on the result of previous reduction. The
final HOG feature for each window can be achieved directly
by concatenating the cached block-level normalized vectors,
as described in the windowClassifier (line 48-65).

LBP: The LBP extraction is proposed by Ojala, et al. [23],
and improved several times. A popular version, Multi-block
Local Binary Patterns (MB-LBP), is a set of features de-
scribed by quadruples, (x, y, w, h). Each quadruple specifies
9 rectangles in the ROI as shown in Figure 4. Using the
integral image, we can easily calculate the sum of pixels in
each rectangle, after which the sums of the surrounding 8

14

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

rectangles are compared with the sum of the central one.
The comparison result (1/0) can be concatenated to a 8
bit integer, e.g. 10010111, which is the LBP feature. The
implementation of LBP feature extraction is similar to Haar
feature extraction, even simpler is that no convolution is
involved.

B. Classification
When the features are extracted from ROI, they are

input to the classification algorithms where the final output
is generated. The classification algorithm frequently used
together with Haar-like features and LBP is called cascades
of boosted classifiers, with resulting applications called Haar-
cascade and LBP-cascade. The concept of this type of
classifier is that instead of using all the Haar/LBP features
in the ROI at once, we divide them into an ordered series
of tests (or stages). In each test, a chosen subset of the
features are evaluated to determine if the given ROI should
be excluded from the result. In other words, only when all
tests are passed we accept the ROI as a target object. Since
the early tests are designed to reject most of the negative data
points, this classification technique enables early rejection of
ROIs, avoiding unnecessary evaluation of all features in an
ROI.

This classification process is implemented as a tree-shaped
control sequence based on sliding window API in our
framework. For HOG-based classification, we use a trained
SVM model as the classifier, which has a even simple
implementation of vector multiplications.

Listing 1: HOG feature extraction with our API
1 class BlockHistogram : public Reduction {
2 //Generate the Block IDs as keys.
3 void gen_keys(Data& cell, vector<int>& keys) override {
4 int ids[4] = {-1,-1,-1,-1};
5 //Pixels in each cell contribute to up to four blocks
6 calculateBlockIDs(cell.x, cell.y, ids);
7 for(int i=0;i<4;i++) keys.push_back(ids[i]);
8 }
9

10 // Accumulate pixels in a cell on histogram.
11 void accumulate(Data& cell, vector<tuple<int ,RedObj

↪→ *>>& histograms) override {
12 //This loop can be optimized with SIMD instructions
13 for(int y = cell.y; x<cell.yend; y++){
14 for(int x = cell.x; x<cell.xend; x++){
15 //Evaluate the derivatives
16 float dx,dy;
17 dx=mat[x+1][y]-mat[x-1][y];
18 dy=mat[x][y+1]-mat[x][y-1];
19 //Calculate bin IDs and votes
20 int bin1=angleCeil(dx,dy);
21 int bin2=angleFloor(dx,dy);
22 //One pixel votes for two bins
23 float vote1=splitVote(dx,dy,bin1)
24 float vote2=splitVote(dx,dy,bin2)
25 //Accumulate the results to histogram
26 for(auto& h: histograms){
27 h.second()->getBin(x,y)[bin1]+=vote1
28 h.second()->getBin(x,y)[bin2]+=vote2
29 ...//detailed interpolation process and pixel

↪→ weight omitted
30 }
31 }
32 }
33 }
34
35 // Merge histogram2 into histogram1 on bin[].
36 void merge(unique_ptr<RedObj>& histogram1, const RedObj

↪→ & histogram2) override {
37 for (int i = 0; i < histogram1.NUM_BINS; ++i)

38 histogram1->bin[i] += histogram2->bin[i];
39 }
40 }
41
42 class BlockNormalization : public Reduction {
43 ...
44 //This reduction process takes care of normalizing

↪→ the block-level histograms caching the result
45 }
46
47
48 class windowClassifier: Operation{
49 //This operation is called in window() to run sliding

↪→ window classification
50 ...
51 void execute(Param& param){
52 int iBlock=param.cordinate.x;
53 int jBlock=param.cordinate.y;
54 double feature[] = new double[param.FEATURE_LEN];
55
56 //fill in feature with cached results of blocks
57 int count=0;
58 for (;iBlock<..;iBlock++)
59 for(;jBlock<...;jBlock++){
60 param.blockCache.get(i,j,feature+count);
61 count+=param.BLOCK_FEATURE_LEN;
62 }
63 if(svm(feature)) param.out.put(param.cordinate);
64 }
65 }

IV. OPTIMIZATIONS IMPLEMENTED IN THE FRAMEWORK

In this section, we propose two significant optimizations
for image processing applications that target the IoT envi-
ronment. The goal behind these two methods is to enhance
the application performance and resource utilization when
devices with different processing power co-exist in the
topology, as described in I.

A. Load Balancing Multi-scale Detection

Our first optimization involves achieving better perfor-
mance through workload distribution for multi-scale object
detection algorithms, considering the topology that has sev-
eral edge devices and either a personal computer (or cloud
or cloudlet). There are two reasons why we will like to
distribute the work between the devices. First, even small
edge devices, such as a Raspberry Pi, have a significant
amount of of processing power. For example, in our environ-
ment, 6 Raspberry Pis’ total computing power is 40% of the
computing power of a family PC equipped with i7-6700K.

The second reason for workload distribution is that more
processing the edge reduces the amount of data that has to be
transferred from edge devices to the PC. Data transmission
can be a significant source of battery consumption at edge
devices, which can be a critical factor when edge devices are
not connected to power.

The workload distribution itself needs to consider multiple
factors such as resource utilization, power consumption, and
latency of operations. Current implementations of the object-
detection algorithms have been ported to edge devices. How-
ever, to the best of our knowledge, there is no implementation
that divides the work between the devices for the PC-edge
environment. With the goal of utilizing the resources on
different types of devices, we focus on work distribution.
Because we are dealing with real-time image processing jobs,
minimizing the latency of processing is the target for our
workload distribution strategy.

15

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Pyramid representation of an image

To enable a balanced and easy-to-implement distribution
of the workload, we can take advantage of the multi-scale
detection structure in the common image processing appli-
cations, which is exposed through our API. Specifically, the
object detection solutions we discussed above are expected to
find out all objects of interest in a given image, regardless of
the position or size. To do this, a sliding window of detection
must be applied on each image from a set of images. This
set of images, called pyramid (representation), comprises the
original image and images geometrically down-scaled from
the original image, as shown in Figure 5.

Two observations can be made. First, each scaled image in
the pyramid can be processed independently, in other words,
task parallelism has been exposed through our API. Second,
the number of windows (all of fixed size) that can be applied
to an image goes down exponentially as the image scales
down. This gives us the convenience of dividing the multi-
scale object-detection workload to devices in different layers
of the topology. As the processing power of central PC is
much higher than those of the edge devices, by assigning
images of larger scales to PC, we can leave a reasonable
amount of work on edge, enhancing both the performance
and resource utility. Specifically, our implementation is as
follows. Once the image is retrieved from the camera, certain
fast pre-processing steps, e.g. equalization and gray-scale
conversion, are applied on the edge device, after which a
copy of the image is sent to the PC. Now, in parallel,
the image is down-sampled and processed on both PC
and Raspberry Pi, according to some pre-calculated split
of scales. For example, we are down scaling a image of
568 × 320px with a factor of 1

1.1 , yielding a sequence of

images in the size of 1 (original), 1
1.1 , 1

1.1

2
, 1
1.1

3
, and so on,

up to 1
1.1

24
. Say, in a 2-layer topology of PC and Raspberry

Pis, one PC is running as the back-end of 6 Pis, giving an
roughly 1:2 processing power ratio for one Raspberry Pi to
the resource serving it on PC end. Based on this estimation,

we can put the images of scales of 1 (original), 1
1.1 , 1

1.1

2
, and

up to 1
1.1

10
on the PC, and 1

1.1

11
to 1

1.1

24
on the Raspberry Pi.

This gives a roughly 2.5:1 ratio for load on PC to the load on
6 Raspberry Pis. By doing this, the job on Raspberry Pi and
PC will finish at about the same time, giving most balanced
scheduling of the workload. In a more complicated topology,
this division of workload can be done automatically after a

pre-run benchmark of processing power at a different level.

This division of workload is done at the runtime. By pro-
viding a series of (down) sampling factors to the distributed
pyramid API, the framework will automatically decide a
reasonable the split of workload between edge devices and
PC. This can be achieved either with user-defined processing
power ratio or the from result of a previous load test using
the same application. Additionally, on top of this fixed load-
balancing module, a dynamic adjustment of workload can be
implemented by monitoring the job finish time on different
devices. In addition to load balancing multi-scale detection
jobs, we also observe similar pyramid structure in fused-layer
CNN [1], as is a potential generalization of this optimization.

B. Caching of Intermediate Results

The second optimization is proposed specifically to en-
hance the performance when convolution operations are
performed in sliding windows. As we have described in III-
A, the convolution kernels in Haar-like features have perfect
rectangle boundaries, and the weight in each rectangle are the
same. Thus, the result of one particular convolution kernel
varies only by a small amount when the window slides one
step in a particular direction. As shown in Figure 6 (left),
for horizontally oriented kernels, convolution result in red
circles stay the same for horizontally adjacent windows. An
analogous property holds for vertically oriented kernels as
shown in Figure 6 (middle). Diagonally shaped kernels can
always be divided to two horizontal/vertical kernels as shown
in Figure 6 (right).

With this observation, we can build a cache to reuse the
results in adjacent steps. First, row by row and column
by column integral images, IR and IC, are introduced to
facilitate the calculation of new steps. More importantly,
for each non-diagonal Haar-like kernel, we cache the entire
convolution result at window (x−1, y) as Convx−1,y and by-
step convolution results S(x−1)%w,y , as is shown in Figure 7.
For horizontal oriented features, the result for the same kernel
in the next step, Convx,y , can be calculated from Convx−1,y

by using the following expression:

Convx−1,y −S(x−1)%w,y +w1× (ICy1y4
)+w2× (ICy2y3

)

In this part, SIMD instructions are used to calculate ICx1x4

and ICx2x3 in advance for adjacent windows.

Vertical features can be calculated similarly from W [x, y−
1]. The management of this cache and the reuse of results are
implemented behind the window operation and convolution
kernel functions. Moreover, to use this caching mechanism,
the sliding windows are executed in a wave-front style, i.e.,
in a sequence of (0,0), (1,0) (0,1), (2,0) (1,1) (0,2), and so
on. This sequence makes sure that when (x, y) is executed,
the results for (x− 1, y) and (x, y − 1) are available.

The LBP algorithm could also take advantage of this
optimization. As discussed in III-A, the calculation of the
MP-LBP feature is still essentially calculation of sum of
rectangle areas in sliding windows. Therefore, by simply
caching 9 sums and by-step sums for each feature can we
deduce the results similarly for the same feature in the next
window.

16

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Result Reuse in Adjacent Windows

On top of this, we can further improve the performance
of this caching by limiting the number of features to be
stored. This is because first, on edge devices, the resources
such as cache and RAM are limited in size and speed
compared to standard PC and thus they may not be sufficient
to support the entire cache. Second, according to III-B, the
cascaded classification uses an early rejection of ROIs. As
the result, for most of the windows, merely first few stages
are frequently executed. With this observation, we can limit
the caching to first few stages so that little resource will be
spent on caching features less likely to be used.

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our frame-
work. Our first set of experiments focus on evaluating the
overall performance and scalability of our framework on two
different platforms. For these experiments, our baseline is
OpenCV [18], a widely used C++ based library for com-
puter vision. OpenCV has implemented these algorithms in
standalone mode with TBB/OpenMP for parallelism support,
which is used for mapping to multiple cores. Our next set of
experiments focus on evaluating the impact of optimizations,
including the ability to partition the work between edge and
central devices.

A. Experiment Setup and Applications
Our experiments are conducted using two different plat-

forms. The first is a 16 core multi-core machine with 3.0Ghz
Intel(R) Xeon(R) Platinum 8000 series processors and over

Fig. 7: Caching for Haar Features

90GB memory, that we accessed on the Amazon Elastic
Compute Cloud (Amazon EC2). The second platform is
an IoT computing setup with one common desktop and
six Raspberry Pi devices. The desktop has one Intel(R) i7-
6700k 4-core CPU running at 4.0Hz, with 24GB RAM and
1000Mbps Ethernet connection to a wireless router. The
router is an AC2600 4x4 Dual Band Wi-Fi router with gigabit
Ethernet connection. Each of the Raspberry Pi has a Quad
core 64-bit processor clocked at 1.2GHz, 1GB LPDDR2
SRAM, and 802.11n Wireless LAN connection to the router.
Each of Raspberry Pis only communicates with the desktop,
forming a hierarchical structure described in I.

We compiled all test applications with OpenCV 4.1.2,
GCC version 7.4, and GOMP on Ubuntu 18.04 (desktop),
latest Raspbian (Raspberry Pi), and Deep Learning AMI
Version 25.3 (AWS).

The three applications we are using are those de-
scribed in III. Each involves gray-scale conversion fol-
lowed by object detection with Haar-like, LBP, and
HOG features, respectively. While performing object de-
tection, the pre-trained models are from OpenCV’s haar-
cascade frontalface default.xml, lbpcascade frontalface.xml,
and hog.cpp, respectively. The first two algorithms are for
frontal face detection with cascaded classifiers, and the third
one is for people detection with SVM. To allow repeat-
able experiments, we use test data with 1000 images pre-
processed to 480×320px from the IMDB-WIKI data set [29].
With the goal of repeatable experiments and comparison
across different configurations and frameworks, we didn’t
take input from Pi’s camera module directly. Specifically, for
cascaded detectors, the number of stages executed in each
ROI heavily depends on the image itself, as described in
III-B, and thus, the workload is dependent upon the set of
images processed.

B. Performance Comparison
First, we test the scalability of OpenCV and our framework

on a 16-core multi-core and Raspberry Pi. As we can see in
Figure 8, the applications using our framework scales well
as the number of cores increases on the multi-core machine.
On one core, our implementation of Haar-Cascade, LBP-
Cascade, and HOG-SVM is faster by 39%, 21%, and 37%
percent over OpenCV. The main reason for this performance
difference is we leverage the reduction object programming
model and the optimizations in Section IV-B

17

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

(a) Haar-Cascade (b) LBP-Cascade (c) HOG-SVM

Fig. 8: Comparing Scalability of Our Framework with OpenCV on AWS T ime(s)/Cores

(a) Haar-Cascade (b) LBP-Cascade (c) HOG-SVM

Fig. 9: Comparing Scalability of Our Framework with OpenCV on Raspberry-Pi T ime(s)/Cores

In scaling from 1 core to 16 cores, each time
the number of cores doubles, the performance gain of
our implementations are {1.89×, 1.87×, 1.75×, 1.52×},
and {1.76×, 1.74×, 1.66×, 1.49×}, respectively, for Haar-
Cascade and LBP-Cascade. Overall relative speedups with
16 cores are 9.46 and 7.57 for these two applications. The
performance gain of OpenCV’s Haar-Cascade and LBP-
Cascade on 2-8 cores falls into the range of 1.64× to
1.9×, showing similar relative speedups as our framework.
For these two applications, in scaling from 8 to 16 cores,
OpenCV’s performance gain is around 1.42×, lower than our
implementation. Overall, relative speedups with 16 cores are
8.61 and 7.22 for these applications with OpenCV.

A more distinct trends is seen with HOG-SVM. In scaling
from 1 to 4 cores, relative speedups with our framework and
OpenCV are 3.88 and 3.90. However, in scaling HOG-SVM
from 4 to 16 cores, we see a much more obvious average
performance gain of (1.55×) using our framework, compared
with OpenCV’s 1.05×. This gain is from the efficient re-
duction structure we are using to implement the evaluation
of histogram. Since the histogram process is very widely
used in various feature extraction and histogram equalization
algorithms, the reduction object paradigm supported in our
current framework (and previously introduced in MATE
and Smart frameworks [16], [33]) can be very helpful in
developing image processing applications. In comparison,
OpenCV implements histogram with intermediate results
including partial derivatives, angle, and magnitude matrices
buffered in memory, which requires additional space and
reduces locality. More broadly, previous work has demon-
strated the advantage of using this reduction object paradigm
in clustering, online training, and other types of applications;
therefore, generalization of our framework in similar IoT

Fig. 10: Running Time of Haar-Cascade with Different Number of
Stages Cached in Cascade Classifier

applications is promising.

We also performed similar scalability test on Raspberry
Pi. As shown in Figure 9, on one core, our implementation
is faster by 34%, 17%, and 35% percent over OpenCV,
respectively, for these three applications. Compared with
the performance on the multi-core server, the performance
improvement for Haar-Cascade and LBP-Cascade is lower.
The reason is that we are caching some results in the
optimizations for these two algorithms. With less cache size,
cache speed, and memory performance, the optimizations
will not execute as efficiently as on desktops. In scal-
ing from 1 to 4 cores, our implementation and OpenCV
has similar performance. For the three applications, the
speed up is {2.84×, 2.31×, 3.66×} for our framework and
{2.99×, 2.18×, 3.58×} for OpenCV.

Figure 10 shows the how the performance of Haar-like

18

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Running Time for Distributed Application with Different
Layers of Images Processed on Desktop

algorithm varies on the edge device when the number of
stages to to be cached are varied. As we have discussed in
IV-B, edge devices tend to have limited resources, whereas
the later stages of cascaded classifiers are not reached in most
detection tasks. Therefore, the number of stages in which the
framework will cache the intermediate results for adjacent
windows are limited, which will also control the peak size
of intermediate results. From it is obvious that caching only
first 4 of 25 stages yields the best performance, with around
15% gain as compared to caching all stages (25 stages
cached). This corresponds to a 33% gain when compared
with OpenCV’s implementation. When more information is
cached, the running time increases due to limited cache size
and memory performance on Raspberry Pi.

Finally, Figure 11 illustrates the ability of our framework
to distribute workload between the edge and the central
devices. To enable setup for this experiment, we compared
the performance of our framework between 4 core execution
on a single Raspberry Pi with 4 core execution on desk-
top. The running time for Haar-Cascade, LBP-Cascade, and
HOG, respectively, is {22.14s, 7.70s, 23.21s} on PC, and
{351.71s, 117.83s, 325.50s} on Raspberry Pi. This result
shows that the performance on desktop for all three appli-
cations are around 15 times better than Raspberry Pi. Thus,
for dividing up the processing between edge devices and the
central device, the central device can be seen has having 2.5
times higher processing power than 6 edge devices.

In the load balancing experiment, we run Haar-Cascade
and HOG-SVM in a distributed fashion on the desktop and
Raspberry Pi. Specifically, the desktop processes the bottom
(more compute-intensive) layers (see Figure 5) of the pyra-
mids from the images collected on each of the 6 Raspberry
Pis. As we can see, when more bottom layers are assigned
to the desktop the processing time decrease dramatically. For
the Haar-Cascade algorithm, after the bottom 11 layers are
assigned to desktop, the time begins to increase slowly, as
the desktop is more heavily loaded. Similarly the minimum
processing time of HOG-SVM happens when 10 images are
assigned to desktop. This confirms to the layer assignment
estimation we gave in Section IV-A. When processing a large
number of images, our framework can decide on the load
distribution automatically.

VI. RELATED WORK

There has only been limited and relatively preliminary
work on programming model development for Edge/Fog
computing. Authors in [27] develop a distributed framework
named MediaBroker for live stream management and data
transformations. The main focus of their work is the type-
aware data transport and the system for describing types
of streaming data. Hong et al. [14] proposes a high level
programming model called Mobile Fog that targets a large
number of distributed heterogeneous devices. Each Mobile
Fog process in their model handles the workload from a cer-
tain Geospatial region and it supports a dynamic distribution
of heavy workload within the same network hierarchy. How-
ever, they didn’t consider workload optimization between
different levels of network hierarchy due to their different
computation abilities. Satyanarayanan et al. propose a decen-
tralized cloud computing architecture called GigaSight [31]
to support edge video analytics using virtual machine-based
cloudlets. The main motivation of their work is to address
the issues of a huge amount of video streams sent to cloud
with strong enforcement of privacy preferences. Although a
multi-step pipeline is considered during video analytics, the
automated deployment of those steps is not their focus. In
summary, we are not aware of previous work on Edge/Fog
settings that considers either of image processing application,
parallelization on devices with different capabilities, and/or
automatic distribution of work between edge and central
devices.

Parallelization of image processing applications has been
extensively studied in the past. Computer vision pioneer
Rosenfeld described parallel image processing approach for a
cellular processor in 1983 [28]. In the decade that followed,
cluster (or network) of workstations became more popular
target [20]. More recently, CUDA has been used for parallel
image processing [35]. A survey of algorithms developed
over several decades can be seen from Braun et al. [7] and
Uhr [32]. OpenCV has lately become a popular framework
for image processing that includes support for paralleliza-
tion [18]. OpenCV has been used in the past on Raspberry
Pi for image processing [6].

The idea of using patterns or skeletons for developing
parallel applications has been used in the past [11], [12],
[22]. Our work is specific to image processing applications,
shared memory parallelization (including on edge devices)
and distribution of work between edge and central devices.

There is a large body of work on task parallel program-
ming models [2], [9], [21], [24], [25]. The task parallelism
exploited in our framework is specific to the pyramid struc-
ture in image processing applications and distributed of
work between edge and central devices. As we evolve our
framework and consider other application classes, ideas from
more general task frameworks can be used.

Similarly, there exists a large body of work on scheduling
DAG-described tasks on multi-processor environments [4],
[10], [19], [34]. These algorithms have been designed to opti-
mize the task scheduling problems given computation power
and bandwidth limits. Specifically, [19] proposed a static
algorithm, Dynamical Critical-Path Scheduling, to schedule

19

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

tasks on fully connected identical processors. [34] provided
a more compact static algorithm based on topological sort.
[30] demonstrated a hybrid algorithm for heterogeneous
processors. More recently, with the emergence of battery-
powered edge devices, the energy concern is brought to this
picture. One published approach [3] is energy aware and it
could dynamically scale down voltage on devices to bring
down both computation power and energy consumption. Our
work is different in starting with a program written in pattern-
based API (as opposed to a task graph), and combining task
and data parallelism. However, scheduling of tasks is limited
because of the applications and target platform we consider.

VII. CONCLUSIONS

Internet of Things (IoT) and associated applications are
going to have a large impact on society and businesses.
Developing applications for this emerging paradigm involves
new challenges. Specifically, we have argued how we need to
exploit data and task/pipelined parallelism for these applica-
tions. Focusing on a specific class of applications (computer
vision), we have developed a pattern-based API that help
develop applications for mapping to these platforms. Our re-
sults have shown that we can effectively parallelize and scale
across cores on both edge and central devices, outperforming
popular vision framework OpenCV in each case. We are also
able to reduce latency by dividing the work between edge
and central devices.

REFERENCES

[1] M. Alwani, H. Chen, M. Ferdman, and P. Milder. Fused-layer cnn
accelerators. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, page 22. IEEE Press, 2016.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. Starpu:
a unified platform for task scheduling on heterogeneous multicore ar-
chitectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011.

[3] S. Baskiyar and R. Abdel-Kader. Energy aware dag scheduling on
heterogeneous systems. Cluster Computing, 13(4):373–383, 2010.

[4] L. F. Bittencourt, R. Sakellariou, and E. R. Madeira. Dag scheduling
using a lookahead variant of the heterogeneous earliest finish time
algorithm. In Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on, pages 27–
34. IEEE, 2010.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pages 13–16. ACM,
2012.

[6] S. Brahmbhatt. Embedded Computer Vision: Running OpenCV Pro-
grams on the Raspberry Pi, pages 201–218. Apress, Berkeley, CA,
2013.

[7] T. Bräunl, S. Feyrer, W. Rapf, and M. Reinhardt. Parallel image
processing. Springer Science & Business Media, 2013.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. 2005.

[9] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sa-
dayappan. Scioto: A framework for global-view task parallelism. In
2008 37th International Conference on Parallel Processing, pages
586–593. IEEE, 2008.

[10] F. Dong and S. G. Akl. Scheduling algorithms for grid computing:
State of the art and open problems. Technical report, Technical report,
2006.

[11] W.-c. Feng, H. Lin, T. Scogland, and J. Zhang. Opencl and the 13
dwarfs: a work in progress. In Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, pages 291–
294. ACM, 2012.

[12] H. González-Vélez and M. Leyton. A survey of algorithmic skele-
ton frameworks: high-level structured parallel programming enablers.
Software: Practice and Experience, 40(12):1135–1160, 2010.

[13] J. Guo and G. Agrawal. Achieving performance and programmability
for mapreduce (-like) frameworks. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC), pages 314–323.
IEEE, 2018.

[14] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe. Mobile fog: A programming model for large-scale
applications on the internet of things. In Proceedings of the Second
ACM SIGCOMM Workshop on Mobile Cloud Computing, MCC ’13,
pages 15–20, 2013.

[15] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi. Fog computing conceptual model. Technical report,
2018.

[16] W. Jiang, V. Ravi, and G. Agrawal. A Map-Reduce System with
an Alternate API for Multi-Core Environments. In Proceedings of
Conference on Cluster Computing and Grid (CCGRID), 2010.

[17] M. Jones and P. Viola. Fast multi-view face detection. Mitsubishi
Electric Research Lab TR-20003-96, 3(14):2, 2003.

[18] A. Kaehler and G. Bradski. Learning OpenCV. O’Reilly Media, Inc.,
2014.

[19] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors. IEEE
transactions on parallel and distributed systems, 7(5):506–521, 1996.

[20] C.-k. Lee and M. Hamdi. Parallel image processing applications on a
network of workstations. Parallel Computing, 21(1):137–160, 1995.

[21] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In Acm Sigplan Notices, volume 44, pages 227–242. ACM,
2009.

[22] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and
K. Tan. From patterns to frameworks to parallel programs. Parallel
Computing, 28(12):1663–1683, 2002.

[23] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of
texture measures with classification based on featured distributions.
Pattern recognition, 29(1):51–59, 1996.

[24] S. L. Olivier, B. R. De Supinski, M. Schulz, and J. F. Prins. Charac-
terizing and mitigating work time inflation in task parallel programs.
Scientific Programming, 21(3-4):123–136, 2013.

[25] S. L. Olivier and J. F. Prins. Comparison of openmp 3.0 and other task
parallel frameworks on unbalanced task graphs. International Journal
of Parallel Programming, 38(5-6):341–360, 2010.

[26] C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework
for object detection. In Sixth International Conference on Computer
Vision (IEEE Cat. No. 98CH36271), pages 555–562. IEEE, 1998.

[27] U. Ramachandran, M. Modahl, I. Bagrak, M. Wolenetz, D. J. Lillethun,
B. Liu, J. Kim, P. W. Hutto, and R. Jain. Mediabroker: A pervasive
computing infrastructure for adaptive transformation and sharing of
stream data. Pervasive and Mobile Computing, 1(2):257–276, 2005.

[28] A. Rosenfeld. Parallel image processing using cellular arrays. Com-
puter, (1):14–20, 1983.

[29] R. Rothe, R. Timofte, and L. V. Gool. Imdb-wiki 500k face images
with age and gender labels.

[30] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling
on heterogeneous systems. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, page 111. IEEE,
2004.

[31] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos. Edge analytics in the internet of things. IEEE
Pervasive Computing, 14(2):24–31, 2015.

[32] L. Uhr. Parallel computer vision. Elsevier, 2014.

[33] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang. Smart: A mapreduce-like
framework for in-situ scientific analytics. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, page 51. ACM, 2015.

[34] M.-Y. Wu, W. Shu, and J. Gu. Efficient local search far dag scheduling.
IEEE Transactions on parallel and distributed systems, 12(6):617–627,
2001.

[35] Z. Yang, Y. Zhu, and Y. Pu. Parallel image processing based on cuda.
In 2008 International Conference on Computer Science and Software
Engineering, volume 3, pages 198–201. IEEE, 2008.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,

2010.

20

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:30:34 UTC from IEEE Xplore. Restrictions apply.

