
Fused DSConv: Optimizing Sparse CNN Inference for Execution on
Edge Devices

Jia Guo

Computer Science and Engineering
Ohio State University
Columbus OH 43210

Email: guo.980@osu.edu

Radu Teodorescu

Computer Science and Engineering
Ohio State University
Columbus OH 43210

Email: teodores@cse.ohio-state.edu

Gagan Agrawal

Computer and Cyber Sciences
Augusta University
Augusta GA 30912

Email: gagrawal@augusta.edu

Abstract—Accelerating CNN on resource-constrained edge de-
vices is becoming an increasingly important problem with the
emergence of IoT and edge computing. This paper proposes an
execution strategy and an implementation for efficient execution
of CNNs. Our execution strategy combines two previously pub-
lished, but not widely used, ideas – direct sparse convolution
and fusion of two convolution layers. Together with a scheme
for caching intermediate results, this results in a very efficient
mechanism for speeding up inference after the model has been
sparsified. We also demonstrate an efficient implementation that
uses both multi-core and SIMD parallelism. Our experimental
results demonstrate that our scheme significantly outperforms
existing implementations on an edge device, while also scaling
better in a server environment.

I. INTRODUCTION

Deep Neural Networks (DNNs) have lately become the
predominant component for smart applications on off-the-
shelf mobile devices. Applications like smart assistants (e.g.,
Apple Siri and Google Assistant), powered by speech and NLP
models [27], and auto portrait retouching camera, using image
processing DNNs [29], are among the most popular modern
computing applications. This work has been powered by a
variety of optimizations that tune DNN inferencing to mobile
devices [8], [25], [33].

With the trend towards Internet of Things (IoT), there
is a growing interest in pushing this further to the edge
devices. Unlike mobile phones, these devices are typically less
expensive, have less computation and memory resources, and
the battery life is an even bigger constraint. Specifically, unlike
smart phones equipped with dedicated neural network acceler-
ators, edge devices typically have only CPUs. Fortunately, with
increasing transistor density, parallelism has become extremely
common on even small edge devices. For example Raspberry
Pi 3 and NXP’s i.MX 8M Nano all have quad-core CPUs.

Given these trends, deep learning frameworks have started
to support those platforms [5], [8]. However, many chal-
lenges remain – particularly, the most popular applications
of Convolution Neural Networks, i.e., computer vision and
speech recognition, are real-time tasks and thus very sensitive
to inference latencies. The topic of designing light-weight
convolutional neural network (CNN) models and optimizing

their execution on resource-limited devices is beginning to
receive attention [8], [24], [30].

Two general methods for improving DNN inference time
have been sparsification and memory-related restructuring,
specifically, loop fusion. Sparsification prunes the original
dense model to remove many of the weights, creating a sparse
model that requires less computations [22], [28], [32], [37],
[39]. While the existing proposals differs considerably in the
sparse patterns chosen, the basic goals remains trying to im-
prove efficiency while maintaining accuracy. Loop fusion, on
the other hand, focuses on utilizing memory (hierarchy) more
effectively [3], [8], [9], [13]. By fusing two (or more) consec-
utive layers, one can eliminate unnecessary materialization of
some of the intermediate results and reduce unnecessary scans
of the data.

To date, the two directions listed above, i.e., sparsification
and loop fusion, have worked in isolation, i.e., loop fusion
has not been applied to sparse models. In this paper, our goal
is to design an inference scheme that works with irregularly
pruned (sparse) models to accommodate for strict hardware
constraints of small (edge) devices. Our work includes com-
bining Direct Sparse Convolution (DSConv) [35] with layer
fusion, with implementation optimizations for multi-core and
SIMD execution.

Specifically, the contributions of this work include the
following. We show that it is possible to fuse the execution of
multiple sparse convolution layers. We modified the execution
flow of DSConv and designed a novel tiling based depth-
wise execution of convolution layers. Such design avoids
the replication of input in GeMM based CNN inference
and complicated cache maintenance in previous approach of
convolution layer fusion [9]. Next, for resource-limited IoT de-
vices, we reorder the loop and lower the memory requirement
for inference on large inputs as loading of the inputs and off-
loading of output can both be tiled. This reordering also gives
better memory/cache locality on small devices. Furthermore,
we show how tiled execution can be correctly parallelized, and
how the inference loops can benefit from SIMD parallelism.

Finally, we compare the performance of Fused DSConv
with conventional GeMM-backed approach and previous work

545

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-7281-9586-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CCGrid51090.2021.00064

20
21

 IE
EE

/A
C

M
 2

1s
t I

nt
er

na
tio

na
l S

ym
po

si
um

 o
n

C
lu

st
er

, C
lo

ud
 a

nd
 In

te
rn

et
 C

om
pu

tin
g

(C
C

G
rid

) |
 9

78
-1

-7
28

1-
95

86
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

G
rid

51
09

0.
20

21
.0

00
64

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

on DSConv. The results show that Fused DSConv signifi-
cantly outperforms GeMM approach in terms of efficiency
and scalability. Particularly, on memory-limited devices where
Caffe [26] fails to carry out the inference, Fused DSConv can
still run and scale well. Fused DSConv also exhibits around
1.5× speedup compared with DSConv, and performs even
better when there are stricter memory constraints. We also
show that in a server environment, our implementation scales
better than Caffe.

II. BACKGROUND AND MOTIVATION

A. CNN Structure

Fig. 1: Convolution Layers

A (2-D) CNN model typically comprises several different
types of layers. The core block, a convolution layer, takes the
input of a M -channel feature map F ∈ RM×DF1×DF2 , where
DF1 and DF2 denote the dimensions of each 2-D channel
(DF1 = DF2 in most cases). The weights, i.e. N convolution
kernels each with M channels of DK by DK filters are in the
form W ∈ RN×M×DK×DK . In the inference phase, the output
O ∈ RN×Do×Do , where Do = DF − DK + 1, is calculated
by a convolution process:

On,x,y =
∑
c,i,j

Wn,c,i,j · Fc,x+i−1,y+j−1 (1)

This process is illustrated in Figure 1.
Apart from the convolution, other commonly used layers

are as follows. Normalization layers will normalize the output
in different directions (intra-channel, inter-channel, or across
samples in a batch), depending on the algorithm used. Activa-
tion layers will transform the input through various activation
functions. Pooling layer can extract max/minimum values
within a given window of input. Finally, a fully connected layer
will perform a matrix-vector multiplication on the flattened
input.

The complexity of evaluating one convolution layer is M ×
DF×DF×N×DK×DK . For a relatively simple CNN, VGG-
16, it can total up to 1.55 × 1010 Floating Point Operations
(FLOPs). The challenge is hardly limited to computing – the
model itself can take up to hundreds of MBs in storage and the
intermediate results also requires substantial memory. This can
severely challenge the resources at inexpensive edge devices.

Fortunately, it is possible to make the model more efficient
in terms of spacial and computational complexity. We next
introduce two categories of complexity reduction approaches
closely related to our work.

B. Existing CNN Optimizations

Weight Pruning: Pruning was first proposed by Han et al.
[22] and is based on the idea that there exists a large portion
of small and redundant weights in convolution kernels. They
employ a iterative threshold-based weight pruning and retrain-
ing scheme to reduce the connection density. This approach is
termed as non-structured pruning, as it leaves irregular sparsity
(0-Dimensional) in weight tensors. Later efforts [37], [39]
employ ADMM regularization [12] to join the process of quan-
tization and weight pruning and achieved high sparsity and
accuracy. On the other hand, structured pruning, which tries to
prune vectors (1-Dimensional), tiles/blocks (2-Dimensional),
channels (2-Dimensional), or kernels (3-Dimensional), has
been explored to improve the CPU/GPU performance, as reg-
ular sparsity allows for simpler software/hardware implemen-
tations [19], [28], [32]. A more recent work [18] leverages the
sparsity by optimizing sparse matrix multiplication (SpMM)
on GPUs.

Fig. 2: Lowering (Pre-processing) for Convolution with GeMM

Next, Direct Sparse Convolution (DSConv) [35] is de-
signed to replace the underlying General Matrix Multiplication
(GeMM) libraries, which require that the input feature map be
replicated several times. This replication, known as lowering
or im2col operation (Figure 2), has demonstrated substantial
overheads [4], [20], especially for kernels with high sparsity
[35]. Even worse, the basic memory requirement for lowering
operation will be several times the input size, and will also
increase quadratically with the problem size [16], [40].

Fig. 3: Direct Sparse Convolution [36]

The DSConv approach, on the other hand, falls back to
the conventional definition of the convolution process with
a reordered loop. Specifically, the DSConv takes as input
convolution kernels (weights) in compress sparse row (CSR)

546

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

format. Each non-zero value is then multiplied with a sub-
matrix in the input map, where this non-zero value will be
applied on according to Equation 1. We call this sub-matrix
the window to apply for the corresponding non-zero weight,
as illustrated in Figure 3. Here, each highlighted box in F is
the window to apply for the non-zero weight in same color in
K. This DSConv approach is later used in several works on
optimizations for CNNs, e.g. TIRAMISU [10] compiler and
Escoin [14].

Other related works also include special architecture de-
signed for sparse CNN [34], [41] and GPU optimization for
sparse CNN [14]. More recent work [31] leverages Sparse
Convolution Patterns (SCP) for filter level pruning and incor-
porates channel-level (structured) pruning.
Layer Fusion: Layer fusion is widely used in frameworks as
Tiramisu [10], TensorRT [2], and SkimCaffe [3] to optimize
the performance of evaluation. The idea is to combine the
evaluation of several adjacent layers. A common implementa-
tion of layer fusion is to pixel-wise fuse a convolution layer
with its following bias, normalization, or activation layers. In
SkimCaffe, for example, the convolution layer is fused with
its following activation, pooling, and normalization layers.

A special (but less common) case is to fuse multiple convo-
lution layers, as proposed by Alwani et al. [9]. This technique
employs tiling and reordering to help feed partial results from
one layer directly to its downstream layer to generate partial
output, forming a depth-first pattern of execution.

C. Motivation
To further motivate this work, we show the computational

and memory requirements of popular DNN models on an
edge device. We use Caffe for this motivating study with
results reported in Table I (Raspberry Pi 3B, with the input
of 3× 227× 227 integers). Caffe [26] (and other frameworks
like cuDNN [15]), uses traditional General Matrix Multiply
(GeMM), requiring replication of dense input matrices. Ta-
ble I shows resources requirements for popular models, and
specifically that CaffeNet, GoogleNet, RCNN, and Vgg can
take up to 690-1160 MB of runtime memory. This can easily
constraint even the high-end edge devices. While memory
availability of edge devices can increase in the future, we can
also expect models and inputs of even larger size, and even the
possibility that multiple models may process the same input
simultaneously. In addition, the 16−49 second inference time
obviously cannot meet the needs of real-time tasks.

TABLE I: Memory Consumption and Latency for Running Caffe On
Raspberry Pi

Model Name Model Size (MB) Peak Mem (MB) Latency (s)
CaffeNet 233 843 16
GoogLeNet 51 806 30.12
Rcnn 220 690 16
Vgg_cnn_s 392.6 1162 48.78

Although DSConv algorithm [35] shows a promising direc-
tion of fast inference on small devices, its implementations

today [14], [35] are mostly on Intel architectures or GPUs.
Because of its low memory requirements, it does seem suitable
for edge device. For the layer-fusion process, current imple-
mentations, e.g., Tiramisu, TensorRT [2], and SkimCaffe [3],
have pixel-wise fusion between a convolution layer and its
following bias, normalization, and activation layers. However,
they have not yet employed fusion between convolution layers,
mainly due to the incompatibility of fusion with the underlying
GeMM libraries and overhead of additional control flow. Such
layer-fusion technique can potentially help to reduce the size
of intermediate results and improve cache/memory locality.

Thus, to summarize, our goal is to create an efficient
inference schemes for sparse models on edge devices, where
we combine the largely unused techniques of DSConv and
layer fusion between (sparse) convolution layers, together with
a careful design that can support parallel execution.

III. FUSED SCONV INFERENCE SCHEME DESIGN

In this section, we present the design of our CNN inference
scheme, Fused DSConv.

A. Preliminaries

Building on top of the existing ideas like Direct Sparse
Convolution (DSConv) and loop fusion, we aim to design a
novel scheme with the following goals:

• Optimizing for devices with limited memory, and in
particular, limiting the size of intermediate results to also
improve the cache performance.

• To utilize the power of multi-core devices.
• Keep memory accesses and control flow sufficiently sim-

ple to facilitate optimization with SIMD operations.

Fig. 4: Fused Direct Sparse Convolution with Simple 1-Channel Input
and Output

The general idea of this process is shown in Figure 4.
Our design fuses the evaluation of two convolution layers
together, since: 1) it is very common to see two successive
convolution layers in popular network architectures such as
ResNet and VGGNet; and 2) fusing more than three layers
requires extensive control code, which can result in overheads
and an impediment to SIMD parallization.

The salient aspects of our scheme include the following:

547

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Direct Sparse Convolution
1: procedure PREPROCESSING(W, DF1, DF2)
2: for n in [0,N] do
3: for j in [W.kernel_ptr[n], W.kernel_ptr[n+1]) do
4: W.kernel_offset[j] ← offset(j, DF1, DF2, DK)
5: //Calculate the first offset of window to apply
6: end for
7: end for
8: end procedure
9:

10: procedure DSCONV(in, W, out)
11: for n in [0,N] do
12: for j in [W.kernel_ptr[n], W.kernel_ptr[n+1]) do
13: offset ← W.kernel_offset[j]
14: val ← W.value[j]
15: for (h,w) in [0, DF1]× [0, DF2] do
16: iter ← h× (DF2 + padding) + w
17: out[n][h][w] += val × in[offset + iter]
18: end for
19: end for
20: end for
21: end procedure

• A tile-based execution with less implementation over-
heads, compared with the previous work on fusion of
convolution layers [9] that employed a sliding window
based execution,

• Avoiding the overheads of retention/re-calculation of in-
termediate results while combining loop fusion and direct
convolution,

• A design that can be efficient both when the CNN is
compute-bound and I/O bounded (the latter when the
input size and number of weights is large).

These features of our design are achieved by two key
innovations. First, we leverage a tiled version of direct sparse
convolution on the 1st convolution layer of the fused exe-
cution. Second, we introduce an inverse version of sparse
convolution to evaluate the 2nd convolution layer. By doing
this, we can fully propagate influence of an input tile to the
output map. The result is that sliding window of input or
retention of intermediate results are not needed.

B. Algorithmic Details

Before describing our overall scheme that incorporates
the above ideas, we first review the original direct sparse
convolution algorithm and then describe our approach. The
implementation of DSConv, as shown in Algorithm 1, takes the
input of a dense feature map f_map and compressed sparse
weights W in a kernel-major CSR format. As a background,
CSR is comprised of three arrays, W.kernel_ptr[] storing the
number of non-zero values in each kernel, W.kernel_offset[]
storing the offsets of each non-zero values in the kernel,
and the W.value[], storing the actual non-zero weights. In
order to prepare the weights for the DSConv procedure, a
transformation (lines 1-8), is done to map each non-zero
value’s offset in the array W.kernel_offset[] to the initial offset

of its window to apply in the input feature map. The intuition
of this step can be illustrated through Figure 3, where the
kernel_offset (1+ 2×Dk = 7) of the weight marked by blue,
with value 0.5 in the kernel, will be transformed to the offset
of the first pixel (1 + 2 × DF2 = 13) in its corresponding
window to apply (blue box) in the input feature map. This
step pre-calculates the initial offset used in each step of the
direct sparse convolution, as shown in line 17.

From line 10 starts the process of the DSConv. It iterates
over the N kernels on the outer loop and each kernel’s non-
zero weights in the inner loop. There is no multiplication-by-
zero involved and the process is highly regular, meaning it
can be tiled and optimized with multi-threading and SIMD
instructions.

Now, our novel algorithm, Fused DSConv, is shown as
Algorithm 2. Before the 1st convolution, the borders of row-
major input feature map are padded with zeros, as in con-
vention evaluation process. Then, we perform a tiled version
of DSConv on the first convolution layer (lines 12-20). The
idea is that for each non-zero weight, its window to apply
will be partitioned into tiles t00, t01, . . . , tPQ, each with size
WT × HT . As illustrated in Figure 4, in the padded input,
window to apply of the red/blue pixel is divided into four tiles
respectively, where the solid 2× 2 tile corresponds to t00. In
each step u, v, we multiply all non-zero weights with their
corresponding tu,v , whose results will be accumulated to an
intermediate tile. Upon the generation of this intermediate tile,
we perform convolution on it again with weights of the second
layer to produce (partial) output. This immediate processing
of intermediate cache can ensure better locality. However,
here we cannot simply apply DSConv again on the cache
without inter-tile retention/recalculation, due to the differences
in the offset for each non-zero weight’s window to apply, and
because the intermediate result is partial.

To resolve this, we introduce the inverse sparse convolution
to align the input window for different non-zero weights, as
shown in the second convolution process of Figure 4. This
relies on the property that convolution is a linear system,
i.e., given an input pixel (value and coordinate) and the
kernels, one can fully determine this pixel’s contribution to
the output feature map, and contributions from different input
pixels can be simply added up for complete output. Using this
altered convolution process, we are able to easily calculate and
accumulate the full contribution of a given tile, as shown in
lines 26-30. More convenient is that the offset shifting (in line
24) will be applied to the output (line 28), rather than input
(line 17), implying that different non-zero weight will actually
be multiplied to the same window to apply. This property
significantly enhances the locality of intermediate cache and
regularity of accesses. To make this happen, the offsets need to
be pre-calculated differently from the DSConv. As we can see
from padded output of Figure 4, the offset, if represented in
(row offset, col offset), is (center row - row, center col - col) =
{(1, 1) for blue, (0, 0) for red} in inverse sparse convolution,

548

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

as opposed to (row, col) = {(1, 1) for blue, (2, 2) for red} if
it were in DSConv.

Such only-once processing makes it much simpler to main-
tain the cache. Specifically, it can be de-allocated or cleared all
at once, and there is no need for more complicated retention
policy as in the original layer fusion work [9]. This also
decouples the processing of different tiles, allowing for easier
multi-threading optimizations. Additionally, the layers that
may appear in-between two convolution layers can be added
to the fused convolution process - including activation layers
and normalization layers.

C. Other Optimizations

To further optimize the process of Fused DSConv and
address the third challenge, we can perform inverse sparse
convolution by input channel. To achieve this, we reformat
the original CSR into W.channel[], W.offsets[], and W.value[],
to reflect the non-zero values by channel, as shown in Figure 5.
In this new format, W.channel[m] stores channel m’s begin-
ning position in W.offsets[] and W.value[]. Within a channel,
W.offset[j] stores the first offset Oj of the output region of
j − th non-zero value, across different kernels. The above
format can be employed when the original model is stored, or
generated by a one-time procedure during the deployment.

Based on this reformatted input, we can iterate over the
M channels of weight tensor on the outer loop instead of N
kernels. Within a given channel, we go through all non-zero
weights across N kernels, those weights will be multiplied
with the same input window/tile, and the results will be
accumulated onto corresponding output regions specified by
W.offsets[]. In this process, reads to the same tile of interme-
diate results are packed together, as will greatly improve the
locality of access and the potential for further optimization
with SIMD instructions.

In Algorithm 2, we only apply this channel-major evaluation
to the 2nd convolution layer, while the 1st convolution layer
remains kernel-major. This allows us to iterate over channels

Fig. 5: Channel-Major CSR Format

Algorithm 2 Fused Direct Sparse Convolution
1: // in: input feature map
2: // W: compressed weights for the 1st conv layer
3: // W2: compressed weights for the 2nd conv layer
4: // out: output feature map
5: procedure FUSED-DSCONV(in, W, W2, out)
6: for u in [0, P] do // tile row id
7: for v in [0, Q] do // tile col id
8: offset_tile = f(u,v)
9: for n in [0,N] do //n-th intermediate channel

10: // 1st conv layer
11: cache.clear()
12: for j in [W.kernel[n], W.kernel[n+1]) do
13: offset ← W.offset[j]
14: val ← W.value[j]
15: for (h,w) in [0, HT]× [0,WT] do
16: iter ← h× (DF2 + padding) + w
17: cache[h][w] +=

val × in[offset + offset_tile + iter]
18: //offset is applied on the input
19: end for
20: end for
21: // 2nd conv. layer
22: // instant propagation of intermediate results
23: for j in [W2.channel[n], W2.channel[n+1]) do
24: offset ← W.offset[j]
25: val ← W.value[j]
26: for (h,w) in [0, HT]× [0,WT] do
27: iter ← h×DT + w
28: output[offset + offset_tile + iter] +=

val × cache[iter]
29: //offset is applied on output
30: end for
31: end for
32: end for
33: end for
34: end for
35: end procedure

of intermediate cache, meaning that it is sufficient to only
keep one channel (WT ×HT) of intermediate results in cache.
Note that in lines 12 - 20, we first generate the result for the
n-th kernel in the 1st convolution, corresponding to the n-th
channel of intermediate results. This channel is instantly fed
to the second convolution, lines 21 - 31, and the partial results
are accumulated to the output layer. After this the cache can be
cleared as the contributions of this channel is fully propagated
to the output layer.

IV. MAPPING TO MULTI-CORE AND SIMD PARALLELISM

In this section, we present the implementation details of
our inference scheme, specifically, the implementation of tile-
based fusion is described with an emphasis on how the fused
execution process is parallelized on multi-core structures.
Later, the optimization with SIMD instructions is discussed.

A. Execution and Parallelism

In the execution, we iterate through all the tiles in a row ma-
jor fashion, i.e. t0,0, t0,1, . . . , t0,P−1, t1,0, t1,1 . . . , tP−1,Q−1.

549

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

Within each tile, the DSconv, Algorithm 2 lines 12-20, is
carried out by kernel, while the inverse sparse convolution,
lines 26-31, is done by channel.

This will always pack access to the intermediate results
by the channel (continuous HT × WT). As a side effect,
the access to input/output will be cross-channel; however,
with row-major tiling, the input/output tied to the active
tiles will be small enough to reside in cache. For example,
when we are processing tiles t0,0, t0,1, . . . , t0,P−1 in the 1st
convolution layer, access to input feature map will only reach
first HT +DK − 1 rows of every channel. Similar rules apply
for the output feature map in the second convolution layer. At
any moment, the active memory region for evaluation will be
(HT +DK,1)×DF2,1 ×Min for input (1 in subscript means
the first layer), HT ×WT × nthreads for intermediate cache,
(HT +DK,2)×DF2,2×Mout for output, plus the compressed
sparse weights. Furthermore, first HT rows of input/output
will not be accessed again during the processing of later
tiles. Such loading process can greatly reduce the memory
footprint compared with previous DSConv implementation,
which accesses the full input map in every loop. To conclude,
the above execution can both improve the cache locality and
performance under lower memory, comparing to either the
GeMM based execution or original DSConv approach.

To make full use of the multi-core architecture, we paral-
lelize the above process using the OpenMP library. We start by
allocating a cache of size HT×WT for each thread, denoted by
C0, C1, . . . , Cn_thread−1. Then, the first HT +D1

K−1 rows of
all input channels are loaded. We assign t0,0, t0,1, . . . , t0,P−1

to different threads. For a given tile t0,j , a worker thread
carries out line 12-31. Since different non-zero weights in the
2nd convolution have their own output region, as shown in
Figure 6, there exists a potential race condition where writing
the output of tiles on different cores will be in conflict. We
resolve this by: 1) ensuring tile width WT is larger than the
kernel size DK , so that conflict only happens between adjacent
tiles, and 2) equally partitioning the tiles to cores and adding
conditional variables to make sure no adjacent windows will be

Fig. 6: Data Race Between two Adjacent Tiles

Fig. 7: Comparing Fused DSConv with Caffe (GeMM based Infer-
ence)

concurrently processed. This solution is efficient since DK in
most practical models is relatively small. Thus, with different
cores are working at approximately the same speed, threads
will rarely wait on conditional variables.

B. Optimizations with SIMD

Today, even the small and inexpensive IoT devices are
equipped with SIMD lanes. For example, Arm Cortex-A
architecture has a well-developed Neon instruction set, and
Helium, the lightweight vector extension for Arm Cortex-M
micro-controller architecture is constantly evolving for DSP
and Neural Network (NN) usages. Therefore, we utilize SIMD
instructions and further optimize the execution. Specifically,
we choose the 64 bit ARMv8-A as an example. This micro-
architecture requires 32 separate SIMD registers, each 128-
bit wide per core [1]. Therefore, we make our tile width a
multiple of 4 (assuming float32 used in the model). On top of
this, we are able to apply scalar-vector multiply-accumulate
(MAC) instructions. More importantly, using different loop
ordering in the two fused convolution layers allows us to
maintain a very small set of intermediate results (HT×WT) for
each thread, which can reside in the per-core SIMD registers.
Consequently, one operand of all multiplication instructions
– the accumulator for the 1st layer and the input vector for
the 2nd layer, will always be in the registers. This greatly
improves the efficiency of processing.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate that Fused DSConv is
efficient for executing sparse models on edge devices by
comparison with a previous DSConv implementation and also
a standard deep learning library Caffe). Furthermore, we
also show that Fused DSConv also shows good scalability
on a multi-core server and better performance under limited
memory.

A. Experiment Setup

Our experiments are conducted using two different hardware
platforms. The first is a Raspberry Pi (RPi) 3B, equipped

550

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Comparing Fused DSConv with DSConv (Sparsified Vgg-19
)

Fig. 9: Comparing Fused DSConv with DSConv (Sparsified ResNet-
34)

Fig. 10: Comparing Fused DSConv with DSConv (Synthetic Sparse
Model)

with a quad-core Cortex A53 processor clocked at 1.2GHz,
implementing ARMv8-A 64-bit instruction set, and execution
Ubuntu 18.04 LTS Arm64. It has SIMD engine on all cores,
each with 32 × 128 bit registers. The device also has 1GB
LPDDR2 SRAM. This device costs roughly $30 at the time
of writing this paper, and thus is a good example of an
inexpensive IoT device in the edge computing setup. The
second is a 16 core multi-core machine with 2.9Ghz Intel Xeon
E5-2666 v3 processor and over 60 GB memory, execution

Ubuntu 18.04 x86_64, that we accessed on the Amazon Elastic
Compute Cloud (Amazon EC2). This platform is used for
scalability study beyond four cores.

One of the challenges for our work was the unavailability
of sparse models as benchmarks. However, since our emphasis
was on performance and not accuracy after sparsification, we
created sparse models by applying random pruning on two
popular models that use many convolution layers. Thus, the
models we are using include sparsified versions of VGG-19
[38], ResNet-34 [23]. In addition, we also used a synthetic
model. Specifically, VGG-19 has 19 weight layers, of them
16 are convolution layers. All convolution layers have 3 × 3
filters, and the number of kernels ranges from 64 to 512. The
parameters total up to ∼ 143M , and the FLOPs ∼ 20G.
ResNet-34 also uses 3 × 3 filters, but with significantly less
parameters (∼ 21M) and FLOPs (∼ 4G). These two models
take 3 × 224 × 224 input, and reports comparable accuracy
[11]. To simulate irregular pruning, we take the dense models
and randomly prune out connections until a certain level of
sparsity is reached. The input set for these two models are 50
random images selected from ImageNet [17], each resized to
3× 224× 224. The inference batch size is set to one.

The synthetic model was designed to keep the layers simple,
but increase the input size (which is the upcoming trend).
Specifically, the input is 3 × 1000 × 1000. The model itself
consists of 4 convolution-3 layers with ReLU activation, with
{64, 64, 32, 32} kernels for each layer. For our experiments,
the images are up-scaled from the same input set as the
previous models. The sparsified models are generated by
randomly pruning out weights in the CNN kernels, forming
models with 70% - 97.5% sparsity, i.e. 30% - 2.5% non-zero
weights. Previous work [7], [21], [22] as shown that even
at this sparsity levels, models tend to have moderate or no
accuracy loss. In our experiments, 5 randomly pruned versions
for each model are generated and the final reported results are
the average over these versions.

The inference schemes in this benchmark include Fused
DSConv, DSConv, and Caffe. The previous implementation
of DSConv is part of SkimCaffe [3], which depends on Intel
tool-chain and libraries; therefore, we use our own version
of DSConv by disabling fusion in Fused DSConv. Thus, the
only difference in implementation between Fused DSConv
and DSConv is fusion of convolution layers whereas the
same approach to parallelization and SIMD is used for both
implementations. In VGG-19 (16 convolution layers) and the
synthetic model (4 convolution layers), each odd numbered
convolution layer is fused with its successive even numbered
convolution layer; whereas in ResNet-34, we fuse each basic
block of Conv-BatchNorm-ReLu-Conv. We build BVLC Caffe
v1.0 from source on both platforms, enabling support for
OpenBLAS and OpenMP.

The experiments we conducted on RPi are: (1) comparing
the performance of Fused DSConv with DSConv using high
(95%) sparsity on 1, 2, and 4 cores; (2) comparing the

551

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

performance of Fused DSConv with Caffe using high-sparsity
model, on 4 cores; (3) showing the trend of performance of
DSConv and Fused DSConv under different sparsity levels on
4 cores; (4) observing the performance of DSConv and Fused
DSConv when there is memory contention. The experiment
on 16-core platform was conducted to compare the scalability
of Fused DSConv and Caffe beyond four cores.

B. Experimental Results

Fig. 11: Scalability on a Multi-core Server. For each of the models,
Caffe version on 1 core is used as baseline for reporting performance.

Fig. 12: Execution Time under Different Sparsity Levels, VGG-19

First, we benchmark the performance of Fused DSConv
against Caffe [26], using models with 95% sparsity. In this
test, Caffe uses Generalized Matrix Multiplication (GeMM)
for sparse convolutions. Both implementations utilize all four
cores of RPi. As shown in Figure 7, for ResNet-34, Fused
DSConv shows a speedup of 5.85×. For VGG-19, Caffe
will take around 6000 seconds to finish due to the memory
limitation, while Fused DSConv can take advantage of the
high weight sparsity and finish the inference in ∼ 10 seconds.
For the synthetic model, the GeMM-based evaluation cannot

Fig. 13: Execution Time under Different Sparsity Levels, ResNet-34

Fig. 14: Execution Time under Different Sparsity Levels, Synthetic
Model

allocate the memory needed (∼ 2GB) to perform the lower
operation im2col, while Fused Conv finishes in ∼ 80 seconds.
It is obvious that compared with Caffe’s GeMM (OpenBLAS),
Fused DSConv has significant performance gain while lower-
ing the memory requirements, benefiting from sparsity and
compression of models.

Next, we evaluate the performance of Fused DSConv and
DSConv on RPi using same 95% sparsity models. We also
studied the scalability by using 1, 2, and 4 cores of RPi. As
illustrated in Figures 8, 9, and 10, it can be observed that Fused
DSConv shows 1.34 − 1.61× performance boost compared
with DSConv on RPi across all settings. Specifically, on four
cores, the speedup is {1.42×, 1.52×, 1.61×} for VGG-19,
ResNet-34, and synthetic model, respectively. As we have
discussed in Section III and Section IV, this performance gain
mainly comes from the improved locality and not outputting
the intermediate results between two fused layers. Since the
size of both input and intermediate results are significantly
larger (1000 × 1000 vs 224 × 224) for the synthetic model,
it benefits more from the efficient input access pattern and
intermediate results handling.

Next, focusing on scalability, when the number of cores
increase from 1 to 4 on RPi, Fused DSConv demonstrates
comparable speedup to DSConv, with {2.65×, 2.68×, 3.03×}

552

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

for Fused DSConv, and {2.61×, 2.49×, 2.81×} for DSConv.
These results show that loop fusion is not limiting parallelism
but aiding it, because of our careful design and implementa-
tion.

To further demonstrate the scalability of Fused DSConv
beyond four cores, we switch to the server platform with 16
cores, where we can study the performance of Caffe when
memory is not an issue. Figure 11 shows these results, with
dashed lines denoting Caffe, solid lines denoting Fused, and
different models in different colors. For clarity, we normalize
the execution time of Caffe on one core as one unit for each
model, and other results are reported as relative speedups. On
one core, we find that Fused DSConv takes 67%−111% more
time to finish. This is because Fused DSConv is not optimized
for Intel processors, whereas OpenBLAS-backed Caffe is able
to better utilize the SIMD instructions. Nevertheless, Fused
DSConv generally shows better scalability, especially from 4
- 16 cores; therefore, when all cores are used, Fused DSConv
will achieve a speedup of {1.54×, 1.94×, 1.90×}. This shows
that our parallelization is very effective.

Additionally, to study how the performance is affected by
sparsity, we evaluate the execution time on RPi of three models
using DSConv and Fused DSConv with different degrees of ir-
regular sparsity. Figures 12, 13, and 14 report that under differ-
ent sparsity, Fused DSConv is consistently faster than DSConv,
with speedup of {1.17−1.44×, 1.21−1.49×, 1.45−1.65×} for
VGG-19, ResNet50, and synthetic model, respectively. As the
sparsity increases, generally we can observe higher advantage
of Fused over DSConv for each model. The main reason
behind this is the channel-major execution of the 2nd fused
layer that packs the sparse access to the same intermediate
channel together. Putting Caffe into the picture, the results
show that above the sparsity of ∼ 80% for ResNet-34 Fused
DSConv exhibits better performance on RPi.

Fig. 15: Execution Time under Different Memory Constraints

Finally, we compare the performance of Fused DSConv and
DSConv under limited memory. This corresponds to the real-
world scenario where strict memory constraint is imposed by
device capacity and/or the need for executing multiple models

simultaneously. In this experiment, we execute the 95%-
sparsity version of VGG-19 and synthetic models, since they
have comparable peak memory consumption (∼ 500MB).
However, the synthetic model takes a much larger input (16x)
as compared to VGG-19, which is a trend we can expect to see
more often in the future. The experiment is carried out on RPi
(4 cores) while varying memory bounds. This is facilitated
using the control groups tools [6] (libcgroup package on
Ubuntu). limiting the physical memory usage while allowing
for sufficient swap size.

The results are reported in Figure 15, with dashed lines
denoting DSConv, solid lines denoting Fused DSConv, and
different models in different colors. We normalize the memory
boundary by the peak memory consumption, and the execution
time by DSConv’s execution time under unrestricted memory.
Comparing the results of 99% vs 101% memory bound, it’s
easy to see that the performance will start to degrade once we
impose a weak memory restriction, by a factor of 0.5− 0.6×.
As the restriction comes to 95% of peak memory, there is
an obvious trend that Fused DSConv suffers less from such
constraint, with a relative speedup of 1.41×, 2.21× for VGG-
19 and synthetic model, respectively, over DSConv. From 90%
onwards, the performance gap of DSConv v.s. Fused grows
steadily for synthetic model, with Fused version having an
advantage of 4.2× at 85% memory. As we have discussed in
Section III, by accessing in/out feature map a few rows at a
time, Fused DSConv has smaller memory footprint, and will
translate to better performance under limited memory. VGG-
19, on the other hand, sees a big leap in execution time at
90% for both DSConv and Fused DSConv. This is mainly due
to that for VGG-19, most memory consumption is to store the
model weights, the weights of dense fully connected layer in
particularly. Both DSConv and Fused DSConv is not optimized
for such dense layers; therefore, a comparable performance
loss is to be expected.

VI. CONCLUSIONS

Deploying sparse CNNs on IoT devices has become a
promising area with the rise of smart and pervasive edge
applications. However, efficient inference of sparse CNN
models remains a significant challenge in this context as one
must accommodate for the limited cache/memory, low CPU
speed, and lack of accelerators. In this work, we present a
novel inference design that enhances the locality of evaluation
by fusing two convolution layers and leverages the irregular
sparsity using a non-GeMM based convolution procedure. We
further tune our implementation using multi-core parallelism
and by exploiting SIMD features. We show an average of
1.5x speedup from fusion alone (Fused DSConv over DSConv,
with later still having the same parallelization and other
optimizations), while outperforming previous GeMM based
implementations by at least 6x. We also show better relative
speedups on a server machine.

553

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

Acknowledgements. This research was partially supported by
NSF awards CCF-1629392; CCF-2007793 and OAC-2034850.

REFERENCES

[1] Armv8-a aarch64 isa overview. https://developer.arm.com/-/media/Files/
pdf/graphics-and-multimedia/ARMv8_InstructionSetOverview.pdf.
(Accessed on 12/04/2020).

[2] Developer guide :: Nvidia deep learning tensorrt documentation. https:
//docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html.

[3] Github - intellabs/skimcaffe: Caffe for sparse convolutional neural
network. https://github.com/IntelLabs/SkimCaffe.

[4] Github - soumith/convnet-benchmarks: Easy benchmarking of all pub-
licly accessible implementations of convnets. https://github.com/
soumith/convnet-benchmarks.

[5] Home | pytorch. https://pytorch.org/mobile/home/.
[6] libcgroup/libcgroup. https://github.com/libcgroup/libcgroup.
[7] Reducing deep learning model size without effecting it’s original

performance and accuracy with tensorflow model optimization toolkit
on real world dataset | by janibasha shaik | analytics vidhya | oct, 2020 |
medium. https://medium.com/analytics-vidhya/reducing-deep-learning-
model-size-without-effecting-its-original-performance-and-accuracy-
with-a809b49cf519.

[8] Tensorflow lite | ml for mobile and edge devices. https://www.tensorflow.
org/lite.

[9] M. Alwani, H. Chen, M. Ferdman, and P. Milder. Fused-layer cnn
accelerators. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, page 22. IEEE Press, 2016.

[10] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. Amarasinghe. Tiramisu: A poly-
hedral compiler for expressing fast and portable code. In Proceedings
of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization, pages 193–205. IEEE Press, 2019.

[11] S. Bianco, R. Cadene, L. Celona, and P. Napoletano. Benchmark analysis
of representative deep neural network architectures. IEEE Access,
6:64270–64277, 2018.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine learning, 3(1):1–
122, 2011.

[13] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, et al. {TVM}: An automated end-to-end
optimizing compiler for deep learning. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), pages
578–594, 2018.

[14] X. Chen. Escoin: Efficient sparse convolutional neural network inference
on gpus. Matrix, 4(5):7–8, 2019.

[15] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759, 2014.

[16] M. Cho and D. Brand. Mec: memory-efficient convolution for deep
neural network. arXiv preprint arXiv:1706.06873, 2017.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[18] T. Gale, M. Zaharia, C. Young, and E. Elsen. Sparse gpu kernels for
deep learning. arXiv preprint arXiv:2006.10901, 2020.

[19] C. Guo, B. Y. Hsueh, J. Leng, Y. Qiu, Y. Guan, Z. Wang, X. Jia, X. Li,
M. Guo, and Y. Zhu. Accelerating sparse dnn models without hardware-
support via tile-wise sparsity. arXiv preprint arXiv:2008.13006, 2020.

[20] S. Hadjis, F. Abuzaid, C. Zhang, and C. Ré. Caffe con troll: Shallow
ideas to speed up deep learning. In Proceedings of the Fourth Workshop
on Data analytics in the Cloud, pages 1–4, 2015.

[21] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[22] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances in neural
information processing systems, pages 1135–1143, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[25] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications. In
Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, pages 82–95, 2017.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[27] V. Kepuska and G. Bohouta. Next-generation of virtual personal
assistants (microsoft cortana, apple siri, amazon alexa and google home).
In 2018 IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC), pages 99–103. IEEE, 2018.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[29] J. Li, C. Xiong, L. Liu, X. Shu, and S. Yan. Deep face beautification. In
Proceedings of the 23rd ACM international conference on Multimedia,
pages 793–794, 2015.

[30] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang.
Pconv: The missing but desirable sparsity in dnn weight pruning for
real-time execution on mobile devices.

[31] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang.
Pconv: The missing but desirable sparsity in dnn weight pruning for real-
time execution on mobile devices. arXiv preprint arXiv:1909.05073,
2019.

[32] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally.
Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922, 2017.

[33] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and
B. Ren. Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 907–922, 2020.

[34] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. Scnn: An
accelerator for compressed-sparse convolutional neural networks. In
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 27–40. IEEE, 2017.

[35] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey.
Faster cnns with direct sparse convolutions and guided pruning. arXiv
preprint arXiv:1608.01409, 2016.

[36] J. Park, S. R. Li, W. Wen, H. Li, Y. Chen, and P. Dubey. Holistic
sparsecnn: Forging the trident of accuracy, speed, and size. arXiv
preprint arXiv:1608.01409, 1(2), 2016.

[37] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang.
Admm-nn: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 925–938. ACM,
2019.

[38] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[39] S. Ye, X. Feng, T. Zhang, X. Ma, S. Lin, Z. Li, K. Xu, W. Wen, S. Liu,
J. Tang, et al. Progressive dnn compression: A key to achieve ultra-
high weight pruning and quantization rates using admm. arXiv preprint
arXiv:1903.09769, 2019.

[40] J. Zhang, F. Franchetti, and T. M. Low. High performance zero-memory
overhead direct convolutions. arXiv preprint arXiv:1809.10170, 2018.

[41] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen. Cambricon-x: An accelerator for sparse neural networks. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture,
page 20. IEEE Press, 2016.

554

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 18:20:29 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T18:51:50-0400
	Preflight Ticket Signature

