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Abstract—Weight pruning approaches for Convolution Neural
Networks (CNN) has been well developed in the past years.
Compared with traditional unstructured and structured pruning,
the new state-of-the-art sparse convolution pattern (SCP) based
pruning uses certain patterns that lead to both high pruning rate
and low accuracy loss. This paper introduce a novel inference
scheme to accelerate the execution of SCP-pruned models on IoT
devices with limited resources. This inference scheme applies and
combines ideas from direct sparse convolution and layer fusion.
To fully utilize the power of modern IoT processors, the inference
is also mapped to all available cores and optimized with SIMD
instructions. The experimental results show good performance
improvement as well as scalability of our scheme on an edge
device.

I. INTRODUCTION

Beyond the success and popularity of smartphones and
their applications, AI and ML are moving towards smaller
devices, such as wearable computing and Internet of Things
(IoT). Broadly, such edge devices are cheaper but with lower
processing capabilities and larger constraints. Thus, there is a
growing need to further optimize DNN inferencing to match
these devices. Specifically, unlike smart phones equipped with
dedicated neural network accelerators, edge devices typically
have only CPUs.

Research has started towards supporting DNN inferencing
on these platforms [2], [3]. However, with more complex
models (and thus requiring more memory and computing
power) required for achieving high accuracy, many challenges
still exist in using edge devices for DNNs. Much attention has
been given to the problem of reducing the high computational
needs associated with the inferencing step while using Deep
Neural Networks (DNNs). To this end, various DNN model
compression techniques have been proposed [17], [19], [20],
[23], [29], [31]. Weight pruning is a representative model com-
pression technique, where 90% or more weights are reduced
to zero. What is often done can be referred to as fine-grained
non-structured pruning and has the advantage of significant
compression or reduction in the number of operations needed
for inferencing, while maintaining high accuracy [9], [11],
[14], [20]. However, this also has the disadvantage that dense
computations for inferencing are now replaced by sparse
computations. The result is that despite a significant reduction
in the number of operations involved, speedups obtained are
marginal at best.

Lately, it has been shown that it is possible to prune
the DNN in a fashion that resulting computations can be
more suited for optimized execution on complex architectures
Along these lines, to preserve fine structure and high accuracy
in pruned models, while not sacrificing to much regularity,
researchers introduce the Sparse Convolution Pattern (SCP)
based pruning [25]. This approach requires that each 2-D
kernel pattern, characterized by shape of non-zero weights,
should be selected from a limited set of patterns. Therefore,
it grants some freedom of pruning within one kernel, but also
ensures regularity among all kernels, which can be leveraged
by parallelism in modern architectures.

Independent of sparsification, a different class of techniques
for improving execution has been loop fusion, where the goal
is utilizing memory (hierarchy) more effectively [3], [4], [6].
By fusing two (or more) layers, one can reduce the number
of memory accesses and improve cache reuse.

Building on top of the success of both pattern-based pruning
and loop fusion for DNNs, this paper examines techniques
where the two are combined. To improve the inference ef-
ficiency of sparse models on IoT devices while maintaining
model accuracy, we propose a novel inference scheme that
is able to leverage the pattern regularity in pruned CNN
layers. Additionally, building on top of our previous work
on the combination of direct sparse convolution and layer
fusion [13], we further improve the locality by fusing the
execution. We conduct several experiments using popular
models and demonstrate that pattern based optimization can
improve the efficiency of execution by up to 19% on top of
direct sparse convolution. Furthermore, the SCP optimization
can be combined with fusion to further speedup the inference.

II. BACKGROUND AND MOTIVATION

A. Existing CNN Optimizations
Weight Pruning: Han et al. [15] introduces pruning, which
was based on the insight that the extensive weights in convo-
lution models are small and/or unimportant. Thus, pruning out
these weights through heuristic methods can yield high model
sparsity with moderate accuracy loss. Latter work [27] further
develops this idea by introducing ADMM regularization. This
type of unstructured pruning approaches leave irregular zeros
in the weight tensor. To avoid such inefficiency, structured
pruning is proposed to prune weights with regular patterns
altogether. For example, the most common of these, channel
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pruning, will prune out an entire 2-D kernel as the lowest
granularity. The resulting models are more amenable to opti-
mized execution [12], [19], [22], with some even capable of
reusing the highly optimized BLAS process [19].
Sparse Convolution Patterns (SCP): A more recent trend is
to find the sweet spot between fully structured and unstruc-
tured pruning, so that the pruned models can be both highly
accurate and regular. The state-of-the-art pruning scheme [21],
[25] introduces a novel sparsity dimension, Sparse Convo-
lution Patterns (SCP). To elaborate, authors first defined is
a pool of SCPs, where the number of non-zero weights in
each pattern is equal. This pool contains all the candidate
patterns that can be taken by 2-D kernels in the sparsified
CNN models, i.e., the shape formed by non-zero weights in
each kernel should be found in this pool. In practice, this
pool is either selected statically from the most frequently used
patterns in pre-trained models [25], or dynamically generated
during training [30]. A empirical number of patterns is 4− 8
[25]. Additionally, the SCP-based pruning also incorporates
channel pruning, meaning certain relatively unimportant 2-
D kernels can be pruned out entirely. This enables a widely
adjustable range of sparsity for pruned models, not limited by
fixed sparsity of the SCP pool.

This pattern based pruning design demonstrates comparable
accuracy to non-structurally pruned models and far outper-
forms structured pruning under the same compression rate
[25]. Furthermore, it is more flexible in terms of patterns
and pruned channels. It also demonstrates desirable inference
speedup compared with non-structured pruning due to higher
access regularity and similarity among the patterns.
Direct Sparse Convolution (DSConv): Another important
background for our presentation is Direct Sparse Convolu-
tion (DSConv) [26]. This method is designed to replace the
underlying General Matrix Multiplication (GeMM) libraries,
which require that the input feature map be replicated several
times, and has significant overheads both computationally and
in terms of memory requirements.

As described in Algorithm 1, the DSConv takes as input
convolution filters (weights) in a popular sparse representation,
i.e., the compress sparse row (CSR) format. Each non-zero
value is then multiplied with a sub-matrix in the input map,
where this non-zero value will be applied and we call this
sub-matrix the window to apply for the corresponding non-
zero weight. Since the introduction of this concept [26], it has
seen deployment in popular compilation systems Tiramisu [5]
and Escoin [7].
Layer Fusion: Layer fusion is a concept based on the popular
loop fusion idea from optimizing compilers. In context of
DNNs, it has been used in several projects, including Tiramisu
[5] and TensorRT [1]. A common implementation involves a
pixel-wise fusion of a convolution layer with its following bias,
normalization, or activation layers. In SkimCaffe, for example,
the convolution layer is fused with its following activation,
pooling, and normalization layers. Much more limited is the
possibility of fusing two consecutive convolution layers (see
Alwani et al. [4]). In Alwani et al’s work, tiling and reordering
are applied first, and used to feed partial results from one layer
directly to its following layer. We can also view it as replacing
a breadth-first or layer-by-layer execution with an execution
that is depth-first.

Algorithm 1 Direct Sparse Convolution

1: procedure PREPROCESSING(W, DF1, DF2)
2: for n in [0,N] do
3: for j in [W.kernel_ptr[n], W.kernel_ptr[n+1]) do
4: W.kernel_offset[j] ← offset(j, DF1, DF2, DK )
5: //Calculate the first offset of window to apply
6: end for
7: end for
8: end procedure
9:

10: procedure DSCONV(in, W, out)
11: for n in [0,N] do
12: for j in [W.kernel_ptr[n], W.kernel_ptr[n+1]) do
13: offset ← W.kernel_offset[j]
14: val ← W.value[j]
15: for (h,w) in [0, DF1]× [0, DF2] do
16: iter ← h× (DF2 + padding) + w
17: out[n][h][w] += val × in[offset + iter]
18: end for
19: end for
20: end for
21: end procedure

B. Motivation

Our preliminary research shows that the computational
workload and memory requirement for dense CNN is un-
realistic for deployment on resource-limited edge devices.
Specifically, we executed four popular models {CaffeNet,
GoogleNet, RCNN, Vgg_cnn_s} using Caffe on a Raspberry
Pi 3B. The latency of execution is {16s, 30s, 16s, 48s} for
four models, respectively, and the peak memory consumption
ranges from 690MB to 1160MB. Such latency level obviously
fails requirements for real-time services. Meanwhile, extensive
computational/spacial complexity leads to high cost of single
device and consumption of power, which diminishes the cov-
erage of edge network. Therefore, extensive sparsification and
optimization is obviously necessary for CNN models in the
IoT context.

Among the three pruning approaches we discussed in
Section II-A, non-structure pruning is the one with most
generality and accuracy, but it suffers from efficiency problem
in the inference process. Specifically, unpredictable zeros in
the weight tensor makes it hard to optimize. Meanwhile, ex-
isting sparse matrix multiplication (SpMM) routines typically
targets scientific applications with extremely high sparsity
(> 99%) [18], [24] and do not fit for sparse convolutional
neural networks (70% - 95%) sparsity. On the other hand,
although structured pruning leaves highly regular sparsity in
the kernels, facilitating optimization based on general matrix
multiplication (GeMM), its accuracy is often compromised
[8], [21]. In comparison, SCP-based pruning shows desirable
accuracy and disable access regularity. Its adaptability and
performance under high sparsity makes a good fit with the
IoT context.

DSConv demonstrates good potential in improving the lo-
cality and reducing the memory requirement of sparse CNN
inference. Yet its implementations [7], [26] are not on IoT
platforms. Layer fusion is commonly adapted in many cases
[1], [5], except while fusing two dense CNN layers due to the
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implementation overhead. However, we believe this will not
be a problem in sparse layer inference and its ability to reduce
intermediate results is valuable in the edge environment.

Therefore, we aim to improve the access locality and mem-
ory efficiency of SCP-based sparse models on edge devices,
using the techniques of DSConv and fusion between CNN
layers. We also want to effectively use parallelism that is seen
even in inexpensive IoT devices.

III. FUSED SCONV INFERENCE SCHEME DESIGN

A. Preliminaries
Based on the previous work of Sparse Convolution Patterns

and layer fusion, we propose a novel CNN inference scheme,
aiming to provide a efficient way of mapping a CNN models
with pattern-based sparsification on multi-core IoT platforms.
Specifically, we set the following targets: 1) Regularizing
access patterns in sparse convolution inference for better cache
performance and vectorization potential, and 2) Improving
memory locality and efficiency using layer fusion while avoid-
ing its overhead, and 3) Achieving effective parallelism on
edge devices with multi-core processors.

To achieve the goals above, we complete our design in four
key steps. First, a format to compress models trained with SCP
is designed. This format groups the kernels across different
filters by SCPs. Based on this format, we propose a single-
layer CNN inference scheme leveraging DSConv concept,
with special optimizations for the grouped weights. Then,
we introduce the idea of scattering DSConv [13] and show
how it can be used to fuse the evaluation of two convolution
layers. Finally, we show how this new scheme can be tiled
and mapped to multi-core structure and optimized with SIMD
instructions.

B. Compression Format for Sparse filters
As we have discussed in Section II, the sparse filters in

DSConv are compressed in filter-major CSR format. In our
work, a new format is introduced to support efficient execution
of Fused SCP. Our new format comprises of two parts, as show
in Figure 1. The first part defines all patterns by their window
offsets. The second part stores the kernels ordered by channel
id and pattern id. First, we allocate an array W.pattern_offset[]
of size NNZ ×Nscp to store all the patterns, where NNZ
is the pre-defined number of non-zeros in each pattern and
Nscp denotes the count of distinct patterns. We identify each
pattern using p_id ∈ {0, 1, . . . , Nscp − 1}. Naturally the
pattern with p_id is recorded in W.pattern_offset[NNZ×p_id :
NNZ×(p_id+1)]. Values in W.pattern_offset[] are the window
to apply offsets of non-zero weights. However, unlike the
W.filter_offset[] in standard DSConv, W.pattern_offset[] does
not include any channel offset information, since they are only
used to describe patterns in 2-D kernel. In another way, they
are calculated as if their corresponding windows to apply all
locate in Channel 0.

Now that the patterns are defined, we can use them to
describe the filters. Instead of standard filter-major arrange-
ment of weights in DSConv, we group the weights by channel
and pattern. For a given Channel c ∈ {0, 1, ...,M − 1}, we
first collect 2-D kernels of Channel c across all filters, and
group these kernels according to their patterns. Suppose Pc

distinct patterns appear in Channel c, then we write
∑c

i=0 Pi to
W2.channel[c+1] to record this number. Then, each of these Pc

patterns can be addressed by p ∈ {Pc−1, Pc−1 +1, ..., Pc−1 +
Pc−1}. For nk kernels sharing the same pattern p with pattern
id p_id, we store their own filter ids and non-zero weights in
W2.weights[], indexed by W2.woffset[p]. We also record the
p_id and nk in W2.patterns[p].

With this format, we can easily access kernels sharing the
same pattern within a given channel, enabling us to leverage
pattern regularity.

C. Single-layer CNN Inference with SCP

Algorithm 2 Direct Sparse Convolution with SCP

1: // in: input feature map
2: // W: compressed SCPs
3: // W2: compressed Channels
4: // out: output feature map
5: procedure SCP-DSCONV(in, W, W2, out)
6: for c in [0,C] do //c-th input channel
7: for p in [W2.channel[c], W2.channel[c+1]) do
8: pid = W2.patterns[p] && 127
9: count = W2.patterns[p] >> 7

10: weights = W2.weights + W2.woffset[p]
11: for i in [0, NNZ-1] do
12: offset = W.pattern_offset[i+NNZ*pid]
13: V = weights + count*(i+1), N=weights
14: for j in [0, count-1] do
15: n=N[j], v=V[j]
16: for (h,w) in [0, DF1]× [0, DF2] do
17: iter ← h× (DF2 + padding) + w
18: out[n][h][w] += v × in[offset + iter]
19: end for
20: end for
21: end for
22: end for
23: end for
24: end procedure

Once the input feature map is padded with zeros, we start
to process it channel-by-channel. As listed from Line 7 of
Algorithm 2, we iterate over all patterns used in a given
channel. For each pattern, we extract its pattern id in W
and the total number of kernels associate to it in Lines 8-
10. Then a sequence of windows to apply is determined by
the W.pattern_offset[]. As there can be several kernels sharing
the same pattern, each window will likely have multiple non-
zero weights to be applied on it. The average number of these
weights can be estimated by

#Filters× Sparsity

#Patterns× PatternSparsity

As #Filters is usually several hundred, #Patterns is below
10, and PatternSparsity is below 0.5, even under high
sparsity, there can be quite a few weights associated with the
same window. In this case, we can load the window to apply
once (Line 12) and multiply it with all the weights(Line 13
to Line 20). Since this scalar-matrix multiplication is highly
regular, it has good potential to be unrolled and vectorized.
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(a) Structure of W (b) Structure of W2

Fig. 1: Format of SCP-Based Filters

D. Fusion of Two Convolution Layers

In the original work of convolution-layer fusion [4], the
authors propose a design using a sliding window on the
input feature map. After processing the previous input, the
window will slide for one stride (typically one pixel) to include
new input. Clearly, there will be a large overlap between
the neighboring windows. To avoid redundant calculations, a
cache to hold results across neighboring windows has to be
maintained. Similar to the sliding input window, the cache has
to evict stale results to include new ones at every stride, adding
extra overhead.

Fortunately, such overhead is unnecessary if we carefully
design the fusion on top of the inference scheme in Sec-
tion III-C. First, we introduce the idea of scattering DSConv,
as described in our previous work [13]. Based on this idea,
we modify Algorithm 2 and get the scattering version. Fusing
it after a standard gathering Algorithm 2, the output/input
windows on the intermediate results can both be aligned. This
design resolves dependencies between adjacent input windows
of the second convolution layer, so that the contributions of
non-overlapping intermediate results can propagate individu-
ally to the output.

In the entire process, access to input is limited to one
channel at a time, and the influence of an input area is full
propagated after being processed once. This optimizes the
cache efficiency for input. Furthermore, the size of intermedi-
ate results is also limited to Nth × N × HT ×WT , take an
typical Nth = 4,WT = 4, HT = 2 in IoT settings, and a large
N = 512 for CNN model, the intermediate result size on each
core will be 8 kB, which is very manageable for IoT devices.

As a final remark, we note that this work has build on
authors prior study [13] on applying convolution layer fusion
and DSConv to CNN inference with random sparse patterns.
Additionally, implementation details of tiling are mostly inher-
ited, and therefore omitted in this work. However, this work
explicitly exploits the regularity with SCP pruning. In next
section, one of our baselines will the scheme from previous
work, and we will demonstrate the benefits associated with the

new scheme.

IV. EXPERIMENTAL RESULTS

We run all experiments on a a Raspberry Pi (RPi) 3B. This
single-board computer has a quad-core Broadcom BCM2837
processor clocked at 1.2GHz, supporting ARMv8-A 64-bit
instruction set. It is also equipped with 32 128-bit SIMD reg-
isters on each core. The device has 1GB LPDDR2 RAM. We
deploy Ubuntu 18.04 LTS Arm64 on this device. We believe
that this device can represent pervasive and inexpensive edge
devices at the time of writing this paper, given its retail price of
around $30 and capability of serving a wide range of sensors
and motors.

Due to the unavailability of pre-trained SCP models and the
goal of creating inference scheme for general SCP-based CNN
layers, we fix the following: (1) the target model sparsity and
(2) the number of non-zeros in each 2-D kernel. Based on (2),
we randomly generate a set of kernel patterns and populate
the filters till we reach the target sparsity in (1). 5 models are
generated for each setting and the final results reported are
always the average across executions on them. The network
structures tested include Vgg-19 [28], ResNet-34 [16], and a
synthetic model. The size of 2-D kernels in each model is
3 × 3, and the input is 3 × 224 × 224. The synthetic model
has 4 convolution layers, each with 256 filters. This model is
generated to study the performance of models with large filter
size on each layer, as this factor can impact the number of
repeating patterns in a channel. The input images are resized
from 50 random images selected from ImageNet [10]. As we
have elaborated in Section II, previous studies have proved
that CNN models can still achieve desirable accuracy under
high sparsity; therefore, we skip the examination of accuracy
in our experiments to focus more on the validation of sparse
inference under various sparsity.

We benchmark the performance of four inference schemes
: DSConv, Fused DSConv, SCP DSConv, and Fused SCP.
In this way, we study the combinations of two independent
optimizations: fusion and SCP on top of the direct sparse
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(a) Vgg19

(b) ResNet-34

(c) Synthetic Model

Fig. 2: Scalability of Four Inference Scheme on RPi

convolution DSConv, as shown in Table I. Specifically, we
implement our own DSConv due to unavailability of DSConv
in the Arm-based IoT environment. Fused DSConv is from
our previous work [13]. SCP DSConv is as described in
Algorithm 2. The last case is combined optimization of SCP
and fusion, introduced in Section III-D. The same approach to
parallelization and SIMD is used for all four implementations.
In Vgg-19 (16 convolution layers) and the synthetic model(4
convolution layers), each odd numbered convolution layer is
fused with its successive even numbered convolution layer;
whereas in ResNet-34, we fuse each basic block of Conv-

(a) Vgg19

(b) ResNet-34

(c) Synthetic Model

Fig. 3: Performance Under Different Number of SCPs

BatchNorm-ReLu-Conv. The experiments we conducted are:
(1) comparing the scalability of four schemes on RPi (2)
varying the number of sparse patterns used and examining
how the performance varies.

Fusion

Sparse
Pattern Default Optimized

Default DSConv SCP DSConv
Optimized Fused-DSConv Fused-SCP

TABLE I: Optimizations Used in Different Schemes

First, we compare both the relative performance and scal-
ability of four inference schemes on RPi using 1, 2, and 4
cores under high (95%) sparsity. The results are displayed in
Figure 2. We fix the number of SCPs to 8 and the number
of non-zeros in each kernel to 4, as suggested by original
authors [25]. For Vgg-19 on 1 core, normalizing the efficiency
of basic DSConv as 1, including optimizations for SCP can
improve it to around 1.09×, and fusion to 1.41×. Applying
two optimization altogether, we achieve a speedup of 1.51×.
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This shows that fusion and SCP optimizations are mostly
orthogonal and can work together to further improve the
performance. The results for ResNet-34 and the synthetic data
are either comparable (or even slightly better).

Next, we vary the number of sparse patterns in the models
to see how the results are impacted. Specifically, we fix 95%
sparsity and generate weights with 4, 8, 12, and 16 sparse
patterns for each model. We execute these models with all
four inference schemes on RPi using 4 cores. The results are
illustrated in Figure 3. It is obvious that the results for DSConv
and Fused DSConv (blue and grey bars) are not influenced by
the number of patterns, as they are not optimized for sparse
patterns. On the other hand, the performance of SCP DSConv
and Fused DSConv (orange and yellow bars) improve as the
number of patterns decrease, since the number of kernels
sharing the same pattern grows.

V. CONCLUSIONS

Pruning redundant weights in convolution layers has be-
come a common practice to generate light-weight models.
In this context, the state-of-the-art pattern based pruning
makes a good trade-off between accuracy and implementation-
efficiency. In this work, we proposed new fused inference
scheme leveraging this pattern based approach. We optimize
the inference using the combined approach of SCP and fusion,
and provide an efficient implementation on multi-core edge
devices. In the experiments, we demonstrate that applying
SCP-based optimizations can improve the inference efficiency
of DSConv on edge devices by up to 19%, and fusion can be
used to further speedup the process. The Fused SCP inference
also shows desirable parallelism on edge devices.

Acknowledgements: This work was partially supported by the
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