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Abstract—Transient execution vulnerabilities originate in the
extensive speculation implemented in modern high-performance
microprocessors. Identifying all possible vulnerabilities in com-
plex designs is very challenging. One of the challenges stems from
the lack of visibility into the transient micro-architectural state
of the processor. Prior work has used covert channels to identify
data leakage from transient state, which limits the systematic
discovery of all potential leakage sources.

This paper presents INTROSPECTRE, a pre-silicon framework
for early discovery of transient execution vulnerabilities. IN-
TROSPECTRE addresses the lack of visibility into the micro-
architectural processor state by integrating into the register
transfer level (RTL) design flow, gaining full access to the
internal state of the processor. Full visibility into the processor
state enables INTROSPECTRE to perform a systematic leakage
analysis that includes all micro-architectural structures, allowing
it to identify potential leakage that may not be reachable with
known side channels. We implement INTROSPECTRE on an RTL
simulator and use it to perform transient leakage analysis on
the RISC-V BOOM processor. We identify multiple transient
leakage scenarios, most of which had not been highlighted on
this processor design before.

I. INTRODUCTION

Transient execution vulnerabilities, originally uncovered by
the Meltdown [25] and Spectre [22] attacks have exposed
fundamental security weaknesses in modern processor designs.
The discovery of these vulnerabilities has lead to an explosion
of transient execution attack variants [5], [7]–[9], [17], [27],
[38]–[40], [48] over the last few years.

In response, a robust body of defenses has been proposed
[2], [6], [14], [18]–[21], [26], [35]–[37], [42], [51], [53]–
[55]. While prior work has made significant advances in
addressing many of the attack variants, new transient execution
vulnerabilities continue to be discovered [34], [47], [49].

A major challenge in discovering all the circumstances in
which transient execution can lead to secret data leakage is
posed by the nature of transient execution itself. By definition,
transient microarchitectural state is rolled back when illegal
data accesses, or mispeculated/invalid instructions are exe-
cuted. This creates a major roadblock to fully understanding
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the negative side-effects of transient execution when only
observing the architectural state of the system. As a result,
prior work that has built tools for detection of transient
execution vulnerabilities [30], [32], [52], has had to rely on
covert channels to determine if secret leakage was possible
on a given system. This significantly limits the visibility
into potential leakage to only known side/covert channels,
hindering a systematic analysis.

In this paper, we present INTROSPECTRE, a pre-silicon
framework for early discovery of Meltdown-type transient
execution vulnerabilities, which are rooted deeply in the
microarchitectural data access speculation (as opposed to the
control speculation abused by Spectre-type vulnerabilities).

In order to address the lack of visibility into the microar-
chitectural processor state, our framework integrates into the
register transfer level (RTL) design flow, gaining full access to
the internal state of the processor. Full visibility into the state
space enables INTROSPECTRE to perform leakage analysis
that includes all microarchitectural structures, allowing it to
highlight potential leakage that may not be reachable with
known side channels. The processor designer can therefore
use INTROSPECTRE to discover and analyze potential transient
execution leakage in the design before the processor is taped-
out, as part of the traditional functional verification process.

The INTROSPECTRE framework consists of two main com-
ponents: a Gadget Fuzzer and a Leakage Analyzer. The Gadget
Fuzzer uses fuzzing to generate randomized code sequences
that trigger various forms of speculative execution, as well as
attempted data access across isolation boundaries. The Gadget
Fuzzer builds test code sequences out of random selections of
simple gadgets, which are predefined code snippets designed
to cover the space of possible speculation primitives, isolation
boundaries and access instructions. The role of these test
code sequences is to set up secret data targets and generate
a variety of random scenarios for accessing that data across
isolation boundaries. The goal is to then observe if secret data
is found in microarchitectural structures from which it could be
extracted by an attacker. To that end, the fuzzing code rounds
are run through an RTL simulator, which generates a detailed
execution log. The Leakage Analyzer parses the execution log



and searches for leakage of secret data deliberately inserted in
each fuzzing round. A detailed execution model constructed by
the gadget fuzzer is used throughout the framework to assist
with the code generation and leakage analysis.

We implement INTROSPECTRE on top of Verilator [1], an
open-source RTL simulator and use it to analyze the RISC-V
BOOM processor [10]. We discover potential leakage arising
from incorrect handling of permissions checks in several
cross-boundary accesses, or aggressive line-fill buffer (LFB)
fill policies. We also find that the hardware prefetcher may
exacerbate some forms of leakage. INTROSPECTRE identifies
potential leakage in the physical register file, line-fill buffer
and write-back buffer of the tested processor. Overall we
discover 13 distinct, not previously documented, Meltdown-
type transient leakage vulnerabilities in the target processor.

This paper makes the following contributions:
• Presents INTROSPECTRE, the first RTL-level framework

for detection of transient execution vulnerabilities.
• Presents a methodology for feedback-driven fuzzing of

test gadgets that increases the effectiveness of the gener-
ated test code.

• Implements INTROSPECTRE on top of Verilator, an open-
source RTL simulator.

• Demonstrates the effectiveness of INTROSPECTRE by
detecting multiple Meltdown-type vulnerabilities and po-
tential leakage scenarios in the RISC-V BOOM processor.

The rest of this paper is organized as follows: Section II
provides background on transient execution attacks and related
work on exploit detection and synthesis. Section III outlines
the threat model. Sections IV–VI present the INTROSPECTRE
framework design. Section VII details the implementation and
experimental methodology. Section VIII presents a number of
use case scenarios for transient leakage detection and Section
IX concludes.

II. BACKGROUND AND RELATED WORK

A. Transient Execution Attacks

Transient execution attacks can be categorized along two
primary axes: (1) how transient effects are co-opted and, (2)
the channel used to covertly communicate information. The
second axis has mostly explored use of the cache hierarchy
(occupancy, replacement metadata, coherence state); but others
have shown it practical to utilize port contention and AVX
instruction latency as well [3], [7], [39]. Attacks can then be
further placed into three classes, based on the first axis:
(a) Metldown-type [25]: leverage transiently executed in-

structions in the shadow of a fault. The canonical exam-
ple and namesake for this category, transiently executed
instructions past a pending exception on on an illegal
memory load. This type of permission-bypassing man-
ifests when protection checks are performed in parallel
to actual data accesses. Other examples include attacks
abusing transient execution past an illegal register read,
or past lazily cleaned register state upon a context-switch
[5], [40].

(b) Spectre-type [22]: leverage misprediction in the pro-
cessor, such as the pattern history table, branch target
buffer [57], return stack buffer [23], [27], or store-to-load
forwarding [17], [28] to trigger the transient execution of
instructions of interest to the attacker. Shared prediction
mechanisms allow attackers to manipulate prediction out-
comes across security boundaries, enabling the coercion
of victim processes into executing down a selected tran-
sient path–ultimately leaking their own secrets through
pre-determined disclosure gadgets.

(c) Microarchitectural Data Sampling (MDS)-type [9],
[47]: leverage in-flight data that is stored in fill and
other buffers, and which is forwarded without adequate
permission checks. Examples include RIDL [48], which
found that if load and store instructions are ambiguous,
some processors may speculatively forward data from
the store buffer to the load buffer; ZombieLoad [38]
that demonstrated line fill buffers are accessible by all
logical CPUs and make no distinction between processes
or privilege levels when forwarding data; CrossTalk [34]
which revealed the ability to leak data from staging
buffers shared across CPU cores; and CacheOut [49] that
showed it is possible to select which data is leaked.

There are several cross-cutting factors across these axes
which play a role in determining the success of attacks, such as
the ability to affect speculation primitives, speculative window
size achievable, latency of the chosen disclosure gadget, timing
reference resolution and retention time of the covert channel.
Defenses attempt to reduce or eliminate the feasibility of these
factors, in order to minimize the likelihood of attack success.

B. Attack Mitigations

Several approaches to defending against information leak-
age through transiently executed instructions have been pro-
posed, both by industry and academia.
Industry responded to the initial disclosure of these exploits
in 2018 with guidelines for application developers, which
were essentially to insert serializing instructions directly af-
ter any vulnerable code sections to constrain speculation.
Additionally, micro-code updates continue to be released by
processor vendors as new vulnerabilities are disclosed, seeking
to remedy sources of leakage in processor functionality where
possible. For example, Intel provided a patch, along with
system software support, to flush and disable shared branch
predictor structures at runtime [19]. A comprehensive list
of micro-code updates and security guidance can be found
in Intel’s Security Advisory portal [18]. Google engineers
developed the retpoline [46] compiler-level steering scheme to
isolate indirect branches. Kernel page table isolation (KPTI)
[14] was integrated into the Linux kernel, which removed
kernel page mappings from user-space and eliminated the
ability to conduct Meltdown attacks.
Academia: the computer architecture community has ad-
vocated for modifications in processor design to enhance
the security of transient execution. Solutions proposed have
mostly followed two general protection schemes: (1) invisible



speculation mechanisms–such as Invisispec [53], SafeSpec
[20], Delay-on-Miss [36] and MuonTrap [2]–where microar-
chitectural state is hidden in dedicated shadow buffers while
computing in a speculative shadow or undone following a
misprediction, in the case of CleanupSpec [35]; (2) mecha-
nisms constraining the use of speculative data from within
the pipeline–such as SpecShield [6], STT [55], NDA [51],
SDO [54] and DOLMA [26]–until data is no longer specula-
tive. Other defenses require system software support, such as
setting up cache partitions to isolate memory accesses across
processes with DAWG [21]; or the annotation of secret data
in ConTExT [37] and Context-Sensitive Fencing [42], which
use taint-tracking to detect malicious gadgets and/or subvert
the leaking of sensitive data.

C. Exploit Detection and Synthesis

Prior work has explored methods by which to synthesize
unique transient execution exploits, as well as techniques to
automatically detect vulnerabilities which allow for covert
channel formation and transmission. Approaches taken so
far include utilizing forms of fuzzing, formal analysis and
information-flow tracking.

1) Fuzzing-based Approaches: Transynther [30] is aimed at
discovering Meltdown-type attack variants by fuzzing seeds
of known exploits, applying random mutations to various
attributes associated with the faulty load and utilizing the
cache as a covert channel in proving the existence of a
leak. SpecFuzz [32] uses a dynamic testing methodology for
discovering Spectre-type transient execution vulnerabilities.
The tool simulates speculative execution in software by forcing
the direct execution of all reachable code paths. Memory
accesses that would otherwise be hidden are made visible to
integrity checkers which can then identify potential disclosure
gadgets. DifFuzz [31] fuzzes program inputs with the goal
to discover side-channels. DifFuzz analyzes two copies of
the same program, with different secret values but the same
inputs. A cost metric is then computed based on the difference
in side-channel measurements (resource usage, specifically,
the number of instructions executed and memory footprint)
between the two applications. SpeechMiner [52] leverages a
fuzzing framework to identify Meltdown-type vulnerabilities
in existing processors. Sequences of x86 instructions are
constructed using templates and executed in a controlled en-
vironment. A cache-based covert channel is used to determine
if vulnerabilities exist. ABsynthe [13] introduces a framework
for finding contention-based side-channels by measuring the
relative effects on timing between different instructions in real
hardware and formulating an optimization problem based on
the maximization of said effects.

2) Formal Specifications: Spectector [15] uses symbolic
execution to automatically detect leaks from transient ex-
ecution by verifying if speculatively executed instructions
leak more than committed instructions. Checkmate [44] is
a tool for exploit synthesis based on happens-before graphs,
which encode microarchitectural events and event orderings.
Relational model finding is applied to determine sets of edges

which satisfy given constraints and represent the behavior
of a specific exploit, from which actual exploit programs
can be synthesized. UPEC [12] constructs 2-safety hardware
properties by shaping formal definitions of security in the
domain of transient execution attacks. The hardware properties
are then checked to verify if the program is executed uniquely
with respect to the secret.

3) Limitations of Existing Frameworks: Frameworks like
SpeechMiner, Transynther, SpecFuzz or DifFuzz face the twin
challenges of very limited microarchitectural implementation
information and the lack of visibility into microarchitectural
state. SpeechMiner, for instance, uses abstract implementa-
tion models that may be incomplete and could miss subtle
behaviors. SpeechMiner also has to rely on covert channels
to identify leakage. This means the source of the leakage has
to be known or suspected, in order to be leaked by the covert
channel. This significantly limits the possibility of discovering
new leakage sources.

D. Hardware Verification

1) Information-flow Tracking: Information-flow tracking
mechanisms for hardware designs seek to capture the routes
of sensitive data, through architectural [41] or gate-level struc-
tures, in order to verify the absence of exposure to an attack
surface. SecVerilog [56] introduces a type system extension
to the Verilog HDL, where information flow policies for a
design can be specified and checked statically at compile-
time. GLIFT [43] proposes an architecture able to track these
flows at run-time. These approaches are effective at identifying
a broad range of information leakage scenarios. However,
they generally require the redesign of the target processors,
with increased complexity, which may not be practical for all
applications.

2) Side Channel Analysis: SVF [11] proposes a quantitative
method to evaluate side-channel information leakage of a de-
sign by measuring the correlation of side-channel information
patterns to the actual execution patterns. CSV [58] builds on
top of SVF by limiting the scope of side channels to only
cache side-channel attacks and improves the accuracy of the
resulting metric. These approaches are targeted to side channel
characterization and do not directly address the sources of
transient execution leakage.

3) Constrained Random Verification: Constrained Random
Verification (CRV) is a design verification method used widely
in industry [29], primarily to verify functional correctness.
CRV uses automatic generation of random input vectors that
follow a set of pre-defined constraints. As the stimuli gen-
eration is done automatically, CRV can be especially useful
in uncovering corner cases in large and complex designs.
CRV can be incorporated in hardware description languages
[16], [33] such as SystemC providing faster verification for
designs modeled in higher levels of abstraction. In general,
CRV methods do not rely on feedback-driven input generation.

INTROSPECTRE uses approaches similar to CRV to random-
ize test gadget parameters. However, CRV does not generally
include a sufficiently-expressive feedback mechanism to guide
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Fig. 1: High-level illustration of the INTROSPECTRE workflow. Framework includes two main components: a Gadget Fuzzer and a Leakage
Analyzer. INTROSPECTRE is designed to run in conjunction with an RTL simulator.

input selection. INTROSPECTRE relies on a detailed execution
model to generate highly relevant test sequences, rather than
rely on random selection. Also, unlike CRV, INTROSPECTRE
relies on more abstract building blocks (instructions and
gadgets) for test generation rather than unit-level/ensemble
of units-level testing. This level of abstraction allows INTRO-
SPECTRE to expose leakage that requires complex software-
initialized states, such as OS isolation boundaries, secret-value
prefetching in various microarchitectural structures, etc. Other
recent work [45] has also similarly observed the benefits of
fuzzing-like approaches to hardware verification.

III. THREAT MODEL

INTROSPECTRE targets transient execution vulnerabilities
that can potentially leak data across isolation boundaries.
We target Meltdown-type vulnerabilities, in which permission
checks are lazily enforced relative to the data access. IN-
TROSPECTRE is designed for pre-silicon verification and we
assume access to the RTL implementation of the processor
under test. We consider cases of potential leakage in which
secret data that crosses isolation boundaries is found in mi-
croarchitectural structures while user-level code is executing.

IV. INTROSPECTRE FRAMEWORK DESIGN

Register-transfer level (RTL) representation is a low-level
detailed implementation of a hardware design. An RTL design
is sufficiently detailed to be synthesized and deployed into
hardware. An RTL simulation uses the RTL representation
of a design to produce a true and detailed simulation of the
final hardware product. These simulations capture the precise
timing and state of every single logic and memory element.
They can therefore provide an accurate and very detailed rep-
resentation of the runtime behavior of the hardware product.
Unlike architectural simulations, which are approximations
of a design’s behavior, RTL simulations rely on the actual
hardware implementation, and are therefore very accurate and
detailed. RTL simulations can provide full visibility into the

state of the processor and are therefore extensively used for
functional debugging and testing in industry.

The INTROSPECTRE framework consists of two main com-
ponents: The Gadget Fuzzer and The Leakage Analyzer
(Figure 1). The gadget fuzzer (Section V) is responsible for
generating stress test code sequences that use speculation
primitives to attempt to access and leak privileged data. The
test sequences are run through the RTL simulator, which
generates a detailed execution log. The leakage analyzer
(Section VI) is used to parse the RTL log to determine if
secret leakage is possible. A detailed execution model (Section
V-C) constructed by the gadget fuzzer is used throughout the
framework to assist with the code generation and leakage
analysis.

V. THE GADGET FUZZER

The primary role of the gadget fuzzer is to generate relevant
test sequences that exercise a wide range of possible tran-
sient execution leakage scenarios. The gadget fuzzer borrows
some of the principles of fuzzing-based test case generation,
including feedback-based selection. In order to keep the test
cases focused on transient execution vulnerabilities we use a
set of predefined code gadgets designed to cover the space of
possible speculation primitives, isolation boundaries and mem-
ory access instructions. The gadget fuzzer consists of three
main components that work jointly to generate targeted test
sequences: Stress-Test Gadgets, Execution Model Generator
and Secret Value Generator (Figure 1). The gadgets are short
code snippets that are combined by the fuzzer to generate
leakage test sequences. An execution model is constructed
in parallel with the test sequences and provides feedback
to the fuzzer to ensure that the resulting test meets certain
functionality requirements. This helps prune the very large
space of possible test sequences by selecting the ones most
likely to lead to useful outcomes.

Table I lists the gadgets we use in our INTROSPECTRE
implementation on the RISC-V BOOM processor.



Main Gadgets Description Permutations
M1 Meltdown-US Retrieve a value from supervisor memory while executing in user mode. 8
M2 Meltdown-SU Retrieve a value from a user page while executing in supervisor mode when SUM bit of sstatus CSR is clear. 8
M3 Meltdown-JP Jump to a user address and execute the stale value. 16
M4 PrimeLFB Prime line fill buffer (LFB) entries with known values from Secret Value Generator. 8
M5 STtoLD Forwarding Generate store and load instructions with overlapping addresses. 256
M6 FuzzPermissionBits Test different combinations of permission bits for a user page. Each page table entry (PTE) has 8 permission bits. 256
M7 ContExeWritePort Create contention on execution units with the same write port. 1
M8 ContExeUnit Create contention on unpipelined execution units. 1
M9 RandomException Randomly choose an excepting instruction and execute it with a bound-to-flush method. 10
M10 TorturousLdSt Randomly generate loads and stores back to back from/to addresses that the processor has already interacted with. 16
M11 AMO-Insts Randomly execute one atomic memory operation (AMO) instruction. 14
M12 Load-WB-LFB Generates loads from values currently in write-back buffer or line fill buffer. 64
M13 Meltdown-UM Retrieve a value from machine-mode protected memory (PMP) while executing in supervisor/user mode. 8
M14 ExecuteSupervisor Jump to a supervisor memory location and start executing instructions. 2
M15 ExecuteUser Jump to an inaccessible user memory location and start executing instructions. 2

Helper Gadgets Description Permutations
H1 LoadImmUser Use Secret Value Generator to generate a user memory address. 1
H2 LoadImmSupervisor Use Secret Value Generator to generate a supervisor memory address. 1
H3 LoadImmMachine Use Secret Value Generator to generate a machine memory address. 1
H4 BringToMapping Create a mapping for a user page with full permissions. 8
H5 BringToDCache Load a memory location to the data cache through bound-to-flush load. 8
H6 BringToInstCache Load a memory location to the instruction cache through bound-to-flush jump. 2
H7 Start/FinishDummyBranch Create dummy branches where all instructions in between are going to be squashed. 8
H8 SpecWindow Open speculative windows of different sizes. 4
H9 DummyException Raise an exception to change the execution privilege in order to execute a setup gadget. 1
H10 Long/ShortDelay Insert variable delays in before execution of main gadgets. 4
H11 FillUserPage Fill a user page with data values that correlate with the page’s address. 8

Setup Gadgets Description Permutations
S1 ChangePagePermissions Modify user pages permissions bits as needed for the main gadgets. 1
S2 CSRModifications Modify supervisor/machine CSRs for the main gadgets. 1
S3 Fill/FlushSupervisorMem Fill/Flush supervisor memory pages (4KB) with values generated by Secret Value Generator. 1
S4 Fill/FlushMachineMem Fill/Flush machine-only memory pages (4KB) with values generated by Secret Value Generator. 1

TABLE I: INTROSPECTRE gadget types with a brief description of their intended functionality. Permutations indicates the
number of distinct variants available for each gadget.

A. Stress-Test Gadgets

We use simple gadgets as the building blocks for the stress
test code sequences. We use gadgets as an input to the Fuzzer,
rather than individual instructions in order to keep the space
of possible test outputs focused. However, to increase test
entropy, these gadgets are randomly selected and assembled
in random order by a Fuzzer module. In addition, each gadget
has multiple parameters that are randomly set by the Fuzzer.
INTROSPECTRE uses three types of gadgets to construct test
sequences: Main Gadgets, Helper Gadgets and Setup Gadgets.

Main Gadgets represent the core of the leakage test se-
quences. They include speculation primitives and data ac-
cess instructions. Many gadgets are based on known attacks,
while others are added to ensure all documented speculation
primitives are covered. In the current implementation of IN-
TROSPECTRE we focus on Meltdown-type vulnerabilities, in
which secrets are leaked across various isolation boundaries.
The speculation primitives we target are primarily exception-
causing instructions.

While several of the main gadgets are generated based on
known transient execution attacks, others are intended to exer-
cise different speculation primitives and isolation boundaries,
even if no clear leakage channel can be defined a priori. This is
achieved by gadgets such as FuzzPermissionBits (M6 in Table
I) in which the fuzzer randomly changes the permission bits
of target pages, while performing different loads and stores
to these pages. This approach can help reveal novel transient

execution vulnerabilities by exercising uncommon accesses
and isolation primitives. INTROSPECTRE can identify potential
leakage of "secret" data in microarchitectural structures, with-
out having to include a leakage channel in the test sequence.
This allows the framework to highlight potential leakage that
may not yet have a known leakage channel.

Gadgets are designed to be composable and allow for data
communication, where the output of one gadget becomes the
input of another. In addition, multiple gadgets can be com-
posed to execute together within the same speculation window.
The execution model is used to ensure gadgets communicate
through memory or registers, and to estimate the effect of the
gadgets’ execution on the architectural and microarchitectural
state of the system.

The main gadgets represent the core of the speculation
primitive and access instructions. In order to create a variety
of conditions under which secret leakage can be observed,
additional helper gadgets are needed. For example, for a simple
Meltdown-US gadget (M1 in Table I) the intended behavior is
to load a secret value from supervisor memory while the code
is running in user mode. The main gadget itself consists of
a single load instruction. However, certain microarchitectural
conditions are required for each main gadget to execute as
intended. For the Meltdown-US gadget, a known secret value
stored in a known supervisor memory location is needed.

Helper Gadgets are used to establish the predefined con-
ditions needed by the main gadgets to work as intended. For



example, for Meltdown-US another requirement is that the
target supervisor address should be present in L1 data cache. A
helper gadget, BringToDCache (H5), is constructed to prefetch
the required memory location in the cache. However, the
required memory address will not be available in L1 data cache
immediately after executing this helper gadget. The fuzzer uses
the Long/Short Delay (H10) helper gadget to make sure the
data is cached in the L1 data cache before the Meltdown-US
(M1) gadget is executed.

Setup Gadgets are responsible for setting up the needed
architectural/microarchitectural state for the main gadgets in
supervisor/machine mode. Unlike helper gadgets, which run in
user mode, setup gadgets are intended to prime the system with
state that can only be changed in supervisor/machine mode.
For example, we implement a simple ChangePagePermissions
(S1 in Table I) gadget that assigns permissions to a target
page. This gadget is preceded by a gadget that deliberately
raises an exception in order to elevate the execution privilege
to supervisor mode. The fuzzer inserts setup gadgets like
ChangePagePermissions in the exception handler code where
they will be executed with supervisor privileges. After the
exception is handled and the setup code executes, control is
returned to the main gadget in the test sequence.

In Listing 1 we show an example fuzzing round that
includes all three types of gadgets combined to replicate the
Meltdown-US behavior. First, a supervisor page is populated
with secrets corresponding to its address by executing S3 setup
gadget in supervisor mode. Next, a random address is chosen
from this page using H2 helper gadget and then H5 gadget
is executed to bring the supervisor secret into the L1 data
cache and also update the TLB with the new mapping. H5
helper gadget utilizes a long-latency chain of dependent divide
instructions to delay branch resolution providing enough time
for the subsequent load to perform address translation and
secret prefetching before being flushed from the pipeline. Now,
we have the supervisor secret in the LFB and the next step is
to use H10 to wait for the secret to propagate into the L1 data
cache. Finally, the M1 main gadget retrieves the data from
the cache. In order to suppress the page fault exception raised
by this illegal access, the load instruction (M1) can be placed
behind a mispredicted branch (H7 helper gadget).

The decision to include setup gadgets and helper gadgets is
based on the state of the execution model. For instance, after
the main gadget M1 is selected, the fuzzer checks M1’s list of
requirements against the current state of the execution model.
If kernel_addr is not present in the L1 Data Cache model, the
fuzzer selects one of the prefetching gadgets (in this example
H5) to execute before M1.

B. Secret Value Generator

The INTROSPECTRE fuzzer uses a secret value generator to
produce memory addresses and populate them with "secret"
data values that can be later observed in the execution log.
Having memory pages with different privileges populated
with known "secret" data helps the leakage analyzer identify
potential leakage by searching the log for those values. These

1 // Setup Gadget
2 //S3 (Populate kernel page with secrets)
3 memset(KernelPage_X, Secret_X, 4096);
4

5 // Helper Gadget
6 //H2 (Choose a random address)
7 kernel_addr = random(KernelPage_X, Kernel_Page_X

+ 4096)
8

9 //H5 (Prefetch secret data into L1D$/TLB)
10 x = y / z // dependent divide insts to delay

branch resolution
11 z = y / x
12 y = y / z
13 if (y < N) // mispredicted branch on 'y' value
14 load(kernel_addr)
15

16 //H10 (Wait for the data to arrive in L1D$)
17 NOP * 8
18

19 //H7 (Mispredicted branch to hide exception.)
20 x = x / z
21 if (x < N)
22 //Main Gadget (M1)
23 load(kernel_addr) // load supervisor secret

Listing 1: Meltdown-US gadgets.

secret values are generated as a function of the address where
they will be stored. If the leakage analyzer finds one of the
secret values in the execution log, it can identify the memory
location where the leaked data originated. Using the execution
model the analyzer can then identify which instruction was the
potential source of the leakage and flag it for further analysis.

C. Execution Model

The INTROSPECTRE fuzzer includes an execution model
designed to assist gadget selection, instruction generation and
leakage analysis. One of the key design challenges for our
framework was how to prune the very large space of possible
test code that the fuzzer can generate. To this end, we designed
a novel approach to guide the fuzzing code generation that
relies on an execution model to predict the behavior of
the fuzzed code. The execution model guides the intelligent
selection of gadgets and gadget parameters to make the code
generated for each fuzzing round more likely to exercise useful
paths.

The execution model provides an estimate of the microar-
chitectural state of the processor gradually constructed by
the fuzzer as new gadgets are selected for a given fuzzing
round. For each instruction or group of instructions that the
fuzzer adds to a fuzzing round, the execution model records
the expected effects on the microarchitectural states of the
processor.

The execution model works similarly to a simple microar-
chitectural simulator. As Figure 1 shows, the model keeps track
of the state of multiple architectural and microarchitectural
elements, including mapped pages, register allocation, cache
and TLB contents, etc. For each instruction added to the
test code, the execution model is updated by estimating the
effects of that instruction. For example if the fuzzer adds a
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Fig. 2: Execution model snapshots record expected microarchitec-
tural state after each instruction.

Load instruction, its address is also added to a list of cached
addresses, along with all other addresses residing in the same
cache line. The contents of the TLB and Line Fill Buffer are
also updated.

This information is used by the fuzzer to determine if certain
requirements for the main gadgets are met. Based on this
analysis the fuzzer may choose to add setup or helper gadgets
to the code. Let’s consider a scenario in which a main gadget
M relies on certain values to be in the cache in order to
perform as designed. After adding M to the test code, the
fuzzer checks the execution model to determine whether the
targeted address is on the list of cached addresses. If it is not,
the fuzzer chooses a helper gadget that will attempt to prefetch
the needed data into the cache. This feedback helps the fuzzer
generate test code that is more likely to reveal interesting
leakage cases with fewer fuzzing rounds.

1) Interface with the Leakage Analyzer: The Execution
Model is used by the Leakage Analyzer to assist with identify-
ing secret leakage. For example, the execution model captures
the secret values that need to be looked up in the RTL
execution log. If a secret value is found, the model assists
with tracing that value back to the source instruction. The
execution model state for a fuzzing round is stored as a series
of snapshots of the microarchitectural state of the system after
each instruction, EM_1 - EM_N in Figure 2.

The more relevant snapshots are tagged with special labels
for easier identification. For instance the execution model uses
permission change labels (P) to tag instructions that follow
permission changes to user pages. The Leakage Analyzer
generates permission change snapshots (EM_P_1 - EM_P_M) to
determine the sections of the RTL execution log during which
illegal accesses may cross isolation boundaries and the log
should be monitored for secret leakage.

D. Test Code Generation

The INTROSPECTRE fuzzer generates randomized test code
sequences that can be executed on an RTL representation of a
processor. The code generation process is illustrated in Figure
3. In the first step, the fuzzer randomly chooses one of the
main gadgets (M3). The main gadgets include a specification
of the microarchitectural state expected by the gadget, if any.
An execution model is generated for gadget M3 and the
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Fig. 3: Generating a fuzzing round from multiple gadgets.

requirements of the gadget are checked against it. Note that
the gadget’s requirements could be satisfied by the execution
of other earlier gadgets in the test code. If the check fails,
the fuzzer chooses helper/setup gadgets designed to satisfy
the missing requirements (H2 and H5). The execution model
is augmented to include the new gadgets. The process is
repeated N times and a new randomly chosen main gadget is
added to the code sequence in each iteration. The idea behind
including multiple main gadgets in the same code sequence
in random order is to increase the entropy of the fuzzing
code by creating complex interactions between gadgets. The
value of N controls the number main gadgets and therefore
the complexity of each fuzzing round.

VI. THE LEAKAGE ANALYZER

Each fuzzing round is executed on an RTL simulator aug-
mented to generate a detailed, cycle-level execution log that
includes the state of all architectural and microarchitectural
storage structures. A Leakage Analyzer module is used to
parse the RTL log to identify potential leakage. In addition
to the RTL log, the Leakage Analyzer also uses the execution
model corresponding to the same fuzzing round. The analysis
process consists of three main steps. The first step is to analyze
the list of EM snapshots to establish timelines during which
values can be considered secrets. This helps exclude legal
accesses as well as priming code in which secret values are
being set up. The second step is to parse the RTL simulation
log to extract all the cycles in which the processor ran in user
mode. Finally, the relevant sections of the execution log are
searched for all secret values specified in the execution model.

An Investigator module parses the execution model to
identify secret values that were generated by the fuzzer, as
well as establish liveness timelines during which the presence
of these values in the RTL log can be considered potential
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Fig. 4: The Investigator module identifies secrets and their liveness
in each fuzzing round.

leakage. The Investigator examines the mapped pages dic-
tionary in each permission-change snapshot. This dictionary
records the addresses of mapped user pages along with their
permission bits. The investigator extracts these mappings from
each EM snapshot (as shown in Figure 4) and creates a key-
value pair for each EM permission-change snapshot. The key
is the permission-change label used by the fuzzer to track a
permission change event in the log. The value is the list of
secrets that will be "live" in the next section of the log.

The list of secrets associated with each permission change
label is inferred from the permission bits of mapped user
pages, and the secret values stored in those pages. For ex-
ample, in Figure 4 we show that after Label_1, the user
permissions of page 0x3000 changes from xwrv to x--v
which means the user loses read/write permissions. The Inves-
tigator adds all secret data values (0x3a3a) stored in page
0x3000 to the secret list for the section of the log spanning
from Label_1 to Label_2. A permissions change to page
0x4000 similarly adds a secret from that page (0x4a4a)
after Label_2.

Finally, the Investigator maps the labels to program counter
(PC) values in the test sequence binary, to generate (PC-Secret)
pairs. Note that the secret timeline is only needed for values
residing in user pages. Supervisor/machine memory values
are considered secrets throughout the entire fuzzing round
execution, while in user mode.

A Parser module processes the raw RTL simulation log,
which includes the content of all the microarchitectural struc-
tures at cycle granularity. The Parser generates two separate
files, as shown in Figure 5: The Filtered Execution Log is
simply a pruned version of the main RTL log which excludes
the machine/supervisor mode execution. The Instruction Log
is a timing record for each dynamic instruction executed in
the fuzzing round. It includes the cycle number in which each
instruction is fetched, decoded, issued, etc. This information
helps the Leakage Analyzer track instructions responsible for
potential leakage.

A Scanner module uses the annotated execution model to
search the Filtered Execution Log for leakage, as illustrated
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Fig. 5: The Parser module processes the main RTL log in preparation
for the leakage analysis.
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Fig. 6: The Scanner module searches the RTL log for secrets
identified and tagged by the Investigator.

in Figure 6. The list of (PC-Secret) pairs is used to identify
the sections of the execution log to scan for each secret value.
For each user-space secret value, only the sections of the log
executed while the value was secret are scanned. For supervi-
sor/machine values the entire log is searched since those values
should always be inaccessible from user space. If a secret
value is found in a microarchitectural structure, the Leakage
Analyzer traces that value back to the producing instruction
and flags it as potential leakage. The list of potential leakage
sources and the microarchitectural units where leakage was
observed are included in the INTROSPECTRE report.

VII. IMPLEMENTATION AND EVALUATION METHODOLOGY

We evaluate INTROSPECTRE on a system-on-chip design
generated through the Chipyard framework [4]. Chipyard
includes Chisel, a high-level hardware generation language,
as well as a compiler and toolchain to translate Chisel designs
into the FIRRTL intermediate representation, which is then
elaborated into Verilog. Particularly of interest to INTROSPEC-
TRE is the printf synthesis feature in Chisel. Components



defined at higher levels of abstraction can have their state
logged, where these statements are automatically carried along
through elaboration. This allows for microarchitectural state
tracing at cycle granularity.

We implement INTROSPECTRE on top of Verilator, an open-
source RTL simulator which converts Verilog code to a cycle-
accurate behavioral model in C++ or SystemC. We use the
RISC-V BOOM (Berkeley Out of Order Machine) (v2.2.3) as
a target for transient leakage analysis. Detailed configuration
parameters for the BOOM SoC are included in Table II.

Core Configuration Parameter Value
# Core 1
Fetch/Decode Width 4/1
# ROB Entries 32
# Int Physical Regs 52
# FP Physical Regs 48
# LDq/STq Entries 8
Max Branch Count 4
# Fetch Buffer Entries 8
Branch Predictor Gshare(HisLen=11, numSets=2048)
L1 Data Cache nSets=64, nWays=4, nMHSR=4, nTLBEntries=8
L1 Inst. Cache nSets=64, nWays=4, nMHSR=4, fetchBytes=2*4
Prefetching Enabled: Next Line Prefetcher

TABLE II: BOOM core configuration parameters.

Test cases generated by INTROSPECTRE build on existing
infrastructure in Chipyard for unit test creation, used in ver-
ifying functional correctness of individual assembly instruc-
tions. This infrastructure, riscv-tests, provides a testing
environment enabling system support through a minimalist
operating system kernel tasked with bootstrapping the proces-
sor, setting up virtual memory and exception handlers. This
efficient testing environment makes running many test rounds
practical with execution times on the order of minutes. All tests
are run on a machine equipped with an Intel Xeon E5-2440
2.40GHz CPU, 32GB of RAM, running RHEL 7.9. As shown
in Figure 1, INTROSPECTRE consists of three phases: 1) Gad-
get Fuzzer (Instruction sequence generation, EM snapshots,
binary compilation), 2) RTL Simulation (Verilator simulator)
and 3) Analyzer (Investigator, Parser and Scanner). Table III
shows the average wall-clock time for each phase, as well as
total time for an average fuzzing round.

INTROSPECTRE Module Execution Time
Gadget Fuzzer 3.71s
RTL Simulation 206.53s
Analyzer 31.57s
Total 241.81s

TABLE III: Average wall-clock execution time for one fuzzing
round.

The majority of test cases consider a threat model with
user/supervisor privilege escalation/de-escalation with respect
to data accesses. However, we also consider cases of machine
privilege escalation, specifically, violating the security guaran-
tees of the Keystone [24] trusted execution environment.

VIII. LEAKAGE CASE STUDIES

In this section, we discuss empirical findings of INTRO-
SPECTRE which demonstrate its efficacy in discovering po-

tential information disclosure. We categorize results according
to the nature of the potential leakage source, or leakage
scenario, and present various case studies which surface these
leakage scenarios. We describe each case study in terms of the
isolation boundary bypassed, conditions required to trigger the
targeted speculation primitive and helper gadgets incorporated
to satisfy said requirements.

Table IV lists all the transient leakage cases and other
isolation boundary violations identified by INTROSPECTRE.
We categorize our findings across three classes: R-Type: secret
values in both physical register file (PRF) and line fill buffer
(LFB), L-Type: secret values in LFB only, and X-Type:
miscellaneous, control-flow oriented.

A. R-Type Leakage Case Studies

R-type leakage scenarios include fuzzing rounds where
sensitive data values can be found in both the physical register
file and line-fill buffer entries. We detail test cases assembled
with INTROSPECTRE exhibiting these characteristics.

1) R1, Supervisor-only Bypass: The R1 case study triggers
lazy handling of a faulty load to bring supervisor data into
the register file and/or LFB, allowing user-mode instructions
to access supervisor-owned data. R1 was found with INTRO-
SPECTRE by combining the M1 main gadget and fulfilling
its requirements with the assistance of the S3 setup gadget
and the H5 helper gadget, which fill supervisor pages with
secrets and prefetch the secret data into the L1 data cache,
respectively. The behavior of R1 is reminiscent of the original
Meltdown exploit.

2) R2, User-only Bypass: The R2 case study is similar to
R1, but the isolation boundary crossed is instead supervisor-
to-user. Normally, accessing a memory location mapped to a
lower privilege while running in a higher privilege mode is
not strictly illegal. However, by clearing the access bits in the
sstatus CSR (RISC-V configuration register) with the S2
setup gadget, the supervisor’s access to user pages is no longer
permitted. Here again, similar to R1, despite raising a page
fault exception, the memory access is performed and data is
brought into the RF or LFB. H11 and H5 helper gadgets are
used to fill user pages with secrets and bring the user data into
the cache. The M2 main gadget then accesses user mapped
memory while in supervisor mode.

3) R3, Machine-only Bypass: Describing the R3 case study
necessitates an explanation of the physical memory protection
mechanisms in RISC-V and the Keystone trusted execution
environment. Keystone is an open-source framework for de-
signing trusted execution environments (TEE) with secure
hardware enclaves on RISC-V systems. A Keystone system
has a security monitor (SM) at its core which is trusted
software that runs in the highest execution privilege in RISC-
V (M), and forms the trusted computing base (TCB) in a
Keystone system. The security monitor is implemented on top
of Berkeley Bootloader (BBL) and is responsible for isolating
memory regions using RISC-V physical memory protection.
The security monitor is also in charge of managing secure
hardware enclaves and remote attestation.



Secret Leakage Instances in the BOOM processor Gadget Combination - Guided Fuzzing
R1 Supervisor-only bypass S3, H2, H56, H103, H74, H83, M12
R2 User-only bypass H1, H48, H114, S2, H1, H53, H101, H72, H81, M25
R3 Machine-only bypass S4, H3, H57, H102, H71, H82, M138

R4 Reading from invalid user pages regardless of permission bits H1, H45, H111, H9, S1, M60-64, M1010, H73, H82, M5128-192, H61, H7, M104, M315, H103, M8,
H1 , M113

R5 Reading from user pages without read permission H1, H43, H118, H9, S1, M6192-256, H1, H43, M564-96, H115, M42, M94, H71, M1010, H1, H44,
H113, S1, M6160-192, M93, M5192-224, H76, M108

R6 Reading from user pages with access and dirty bits off H1, H41, H113, H54, H102, M532-64, H9, S1, M632-96, H73, M105, M50-16

R7 Reading from user pages with access bit off H1, H42, H116, S1, M680-160, M93, M532-96, H74, H82, M101, H1, S1, M664-256, H73, M516-64,
M108

R8 Reading from user pages with dirty bit off H1, H44, H111, S1, M632-48, H52, H71, M102, M109

L1 Leaking page table entries through LFB H1, H46, H114, M8, H9, S1, M6128-160, H57, H74, M103, H1, H48, M46, H9, S1, M664-160, H53,
M120-48

L2 Leaking secrets of a page without proper permissions in LFB by
using prefetcher

H1, H43, H112, M41, H1, H62, H73, M37, M1112, H9, S1, M6192-256, H71, M516-64, H1, H58,
H102, M1232-64, H1, M43, H52, H73, M104, H52, M115

L3 Leaking supervisor secrets after handling an exception through
LFB S3, H2, M95, H1, H46, M564-128, H9, S1, S3, M664-128, H76 ,H82, M41, M120-16, H1, H113, M50-32

X1 Jump to an address and execute the stale value H1, H43, H112, H71, M97, H1, H44, H73, H62, H104, M313

X2 Speculatively execute supervisor-code/inaccessible-user-code
while in user mode S3, H2, H56, H72, H61, M31, H1, H43, H117, H71, H62, H103, M152, M97, M141

Secret Leakage Instances in the BOOM processor Gadget Combination - Unguided Fuzzing
Rnd1 Supervisor-only bypass (Secret only in LFB) H1, H2, M95, S3, M113, M104, H73, M17, M41, S1
Rnd2 Supervisor-only bypass (Secret only in LFB) H6, M104, H104, S3, H2, M1216-32, H9, M116, H53, H102
Rnd3 Supervisor-only bypass (Secret only in LFB) M151H2, H115, M8, M32, M26, S3, M108, M5224-256, H48

TABLE IV: Secret leakage scenarios and the gadget combinations that triggered them. The main gadget responsible for the
leakage is highlighted in bold. The subscript number for each gadget represents the permutation ID.
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Fig. 7: a) Memory layout of security monitor-enabled bootloader. b)
SM secrets show up in PRF and LFB in post-simulation analysis.

According to the RISC-V Privileged ISA [50], the RISC-V
physical memory protection (PMP) unit provides a set of CSRs
to specify physical memory access privileges (read, write,
execute) for each physical memory region. Using PMP control
and status registers, the security monitor divides the memory
into two parts at boot time, as illustrated in Figure 7. The
first PMP entry CSR configured by the security monitor sets
its own address range with all permissions turned off (all bits
set to 0). The last PMP entry CSR is configured to grant full
permissions for the remainder of the memory space (bits set
to 1). This setup allows the OS access to all of memory, with
the exception of memory belonging to the security monitor.

The test sequence responsible for leakage scenario R3
passes fuzzer selected instructions as the payload to the
bootloader, which is enhanced with a security monitor, to
be executed in supervisor mode. Enclave creation is not part
of the test sequence because the goal is to bypass machine-

only memory, where the entire security monitor address range
already meets this requirement.

INTROSPECTRE primes the machine-only memory by stor-
ing different secret values throughout the security monitor ad-
dress range using the S4 setup gadget. According to Keystone
security assumptions, this region should not be accessible by
processes in user or supervisor mode. However, INTROSPEC-
TRE was able to produce test cases showing machine-mode
secrets in the LFB, PRF and write-back buffer. Analyzing
the test sequence, we determined this was accomplished by
the M13 main gadget executing in supervisor mode. M13
accessed security monitor memory (protected by RISC-V
PMP), which raised a Load Access Fault exception. However,
the memory request was not squashed, and the secret value
was eventually accessed–finding its way through to the LFB
(if not cached) or PRF (if cached by the H5 helper gadget).

4) R4-R8, Leaking Inaccessible Data: Case studies R4-
R8 include scenarios where user pages are accessed by user-
mode processes, but without proper access permissions. IN-
TROSPECTRE first fills user pages with secret values using
the H11 helper gadget and then changes the permission bits
of those pages with the M6 main gadget. The permissions
change requires higher privilege execution and the S1 setup
gadget is used to accomplish this. Finally, main gadgets such
as M10, M12, and M5 are used to perform various loads to
different pages with different permission bits, in an effort to
increase the odds of discovering potential leakage. The cause
of leakage in this scenario is similar to R1, where the memory
request is not canceled despite raising an exception.

As a concrete example, in the R4 case study, secrets reside
in an invalid user page and can be leaked through the LFB and
PRF. Normally, when the valid bit of a page is clear the page
should not be accessible to any privilege level, regardless of



other permission bits in the PTE. However, we have observed
that contents of an invalid user page is leaked to the LFB and
register file even though the access instruction raises a page
fault exception.

The same behavior can be found in case studies R8, R7,
R6 and R5 where user pages have dirty bits cleared, access
bits cleared, both access and dirty bits cleared, or lack read
permissions, respectively. Accessing pages with the criteria
outlined for case studies R4-R8 raises a page fault exception,
but the data is retrieved before the offending instructions
are squashed. We have used the FuzzPermissionBits M6
main gadget to cover all possible combinations of user page
permission bits.

B. L-Type Leakage Case Studies

L-type leakage scenarios include fuzzing rounds where
secret values can be observed in line fill buffer entries but did
not make their way through the register file. Note that the line
fill buffer interfaces between caches, and, while not directly
accessible by the user, it has been shown to be vulnerable to
side channel leakage [38].

1) L1, Leaking PTE through LFB: In the L1 case study,
INTROSPECTRE captured page table entries in the LFB while
running in user mode. Page table entries are part of supervisor
memory, which should be protected from user mode instruc-
tions. On every TLB miss, which may be added to the test
sequence with the H4 helper gadget, an internal cache request
to the address of the root page table is performed to retrieve
the correct mapping (if available). If this cache request misses
in the L1D, the LFB gets filled with the entire line of PTEs
in the next few cycles. The prefetcher can also exacerbate this
situation by prefetching the next line and bringing it to the
LFB, exposing additional PTEs.

2) L2, Leaking from Prefetcher to LFB: The L2 case
study reveals that hardware prefetchers can introduce poten-
tial sources of leakage. Normally, accessing page boundary-
straddling addresses of a user page with proper permissions
is legal. However, if inaccessible user pages (created by
fuzzing page permission bits with main gadget M6) are located
right after an accessible user page, we may have secrets
of the inaccessible page leaked into the LFB. This can be
triggered by accessing the boundary-straddling addresses of
the accessible pages via torturous loads from the M10 main
gadget. As a simple example shown in Figure 8, if an access
to address 0x5FF8 misses in the L1D, the prefetcher will
request the next address, which falls within the boundary of
the next (inaccessible) page. As a result, secret values from
page 0x6000 will be brought into the LFB.

3) L3, Exception Handler Leakage: Case study L3 demon-
strates possible leakage on exception handler exit. When an
exception is raised while executing in user mode (e.g executing
H9, H4 helper gadgets), execution privilege is changed to
supervisor mode to handle this exception. Before executing
the exception handler code, the processor stores the values of
general purpose registers in supervisor memory (Trap Entry
in Figure 9). After the handler has finished execution and

0x5000 0x6000

Virtual Address

0x7000

Accessible Page Inaccessible Page

0x5FF8 0x6008

Fig. 8: Illustration of accesses straddling two memory pages with
different permissions.
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#Save GPRs #Load GPRs
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LOAD  x13,13*REGBYTES(a0)
LOAD  x14,14*REGBYTES(a0)
LOAD  x15,15*REGBYTES(a0)

REGBYTES = 8

Fig. 9: Instructions executed to handle an exception.

before changing the execution privilege back to user mode,
the processor reloads the previously stored register values from
supervisor memory back to the registers (Pop Trap Frame in
Figure 9). INTROSPECTRE produced test cases in which some
of these loads from supervisor memory miss in the cache.
As a result, the LFB gets filled with supervisor data residing
in memory locations that fall in the same cache line as the
stored register values. Figure 10 illustrates such a scenario.
While entries LFB[0–5] contain the saved registers, LFB[6]
and LFB[7] contain supervisor data. In other words, this secret
data is brought into the LFB and remains there even after the
execution privilege is reverted back to user mode. This effect
is again amplified by the prefetcher, which fetches the next
line into the LFB bringing supervisor data to LFB[8–15].

C. X-Type Leakage Case Studies

X-type leakage scenarios exhibit speculative control-flow
hijacking and the influence of indirect branch targets.

1) X1, Execute Stale PC: In this case study, INTROSPEC-
TRE demonstrates that control logic can proceed with a stale
PC value, if there is an outstanding store request to the same
address as the PC. This behavior was revealed by the M3
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Fig. 10: In the L3, Exception Handler Leakage, supervisor secrets
end up in the LFB in cycle M. In cycle M+K, the prefetcher brings
an entire cache line of supervisor data into the LFB.



Main Gadgets
Isolation

Boundaries M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 Leakage Type
Identified

U ——> S 3 - 3 3 3 3 3 3 3 3 3 R1, L1, L3
S ——> U 3 - 3 3 3 R2

U ——> U* - 3 3 3 3 3 3 3 3 3 3 R4-R8, L2
U/S ——> M - 3 3 3 3 3 3 R3

TABLE V: Coverage of leakage across multiple isolation boundaries - (U)ser, (S)uperviser, (M)achine - types of leakage found,
and main gadgets used in the fuzzing rounds that revealed the leakage. Arrows represent the execution privilege of main gadget
(left) and privilege level of accessed memory (right).

Virtual Memory

Value  Y

User Address X
L1D$

Inst Cache
User Address X
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JUMP   [User Addr X]

Value Y

STORE  Value Z, [User Addr X]

STORE  Value Z, [User Addr X]

JUMP   [User Addr X]

Value ?

Value Y

(b)(a)

PC: User Addr X + 4

PC: User Addr X

Mapping

User Address X

Fetched

Resolved
Fetched
Resolved
Fetched
Resolved

PC: User Addr X

Fig. 11: a) Required setup for Meltdown-JP. b) Timeline of instruc-
tion execution.

main gadget. Figure 11 shows a "User Address X" located in
a user page with full permissions. This address is primed with
the assistance of the H6 helper gadget, but it is not present in
the cache. Also, the virtual-to-physical mapping for this user
page is available in the ITLB but not in the DTLB. With this
setup, a jump instruction to "User Address X" that immediately
follows a store to the same address, would resolve faster than
the store. As a result, the PC is loaded with the stale "Value Y"
and the control-flow of the program is changed. Importantly,
the addresses of the jump and store are not disambiguated, so
no conflict is detected and no exception will be raised.

2) X2, Illegal Speculative Control-Flow: The X2 case study
executes supervisor code speculatively from user mode. The
requirement for this test is to have the supervisor address in
the instruction cache. By performing a jump to this S-mode
address, the processor assigns an ROB entry for the instruction
and raises an instruction page fault exception as soon as the
instruction is added to the ROB. Although the instruction never
executes and subsequent instructions are also not assigned
resources, it may still leak information about the instruction
type in supervisor code.

D. Guided and Unguided Fuzzing

In order to demonstrate the importance of guided fuzzing,
we also examined INTROSPECTRE with the Execution Model
removed. In this experiment we generate 100 fuzzing rounds
in which gadgets are randomly chosen from our pool of gad-
gets, with randomly assigned configuration parameters. Each
fuzzing round includes 10 gadgets. We find that, out the 100
rounds, 3 rounds reveal the "Supervisor-only bypass" leakage
instance (Rnd1–Rnd3 in Table IV), however the leakage is
only observed in the line fill buffer, with the secret value
not reaching the register file. Overall, the random pick of
gadgets is much less effective at identifying new leakage, with
1 leakage type out of 100 runs, compared to the 13 distinct

leakage scenarios for roughly the same number of fuzzing
rounds, with the INTROSPECTRE guided process.

E. Coverage Analysis and Discussion

We examine the coverage of INTROSPECTRE along four
dimensions:

1) Coverage of Microarchitectural Structures: INTRO-
SPECTRE can track all microarchitecturally accessible storage
elements. In our implementation we record all structures that
could possibly be a leakage source. From this perspective,
INTROSPECTRE can guarantee full coverage of all microar-
chitectural storage elements.

2) Coverage of Isolation Boundaries: We enumerate all
possible combinations of isolation boundaries that could be
vulnerable to Meltdown-type attacks. Table V shows all pos-
sible accesses across isolation boundaries. We show the main
gadgets that exercise those accesses and the instances in
which possible leakage was identified. We can see that the
INTROSPECTRE gadgets cover accesses across all possible
isolation boundaries.

3) Gadgets Coverage: Gadgets implement kernels from
known attacks, speculation primitives, memory access across
isolation boundaries, etc. As a proof-of-concept, we implement
a subset of the known Meltdown-like attacks that are relevant
to the BOOM architecture. This set can be expanded to more
attacks, other speculation primitives, etc. The set of gadgets
cannot be guaranteed to be complete, as there are simply too
many degrees of freedom.

To increase the probability of discovering new attacks or
new variants, most gadgets are parametrized, adding another
dimension to the fuzzing space. In most cases these parameters
can be enumerated to ensure complete coverage of each
parameter value. The permutation metric in Table I shows the
number of variants for each gadget class. Examples of gadget
parameters include speculation primitives, access instructions,
secret layouts, access permissions, etc. For example, the
STtoLD-Forwarding (M5 in Table I) main gadget has 256
variants (permutations), as illustrated in Figure 12. For M5
we choose between four types of Load instructions, four types
of Store instructions, four memory access granularities, and
residency state in the L1D and line fill buffer (LFB).

In summary INTROSPECTRE looks for leakage in all rel-
evant storage elements, supports accesses across all isolation
boundaries and utilizes gadgets targeting all known Meltdown-
like attacks, enhanced with hyperparameters to increase cov-
erage to new variants.
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Fig. 12: Possible permutations for the M5 STtoLD-Forwarding
gadget.

F. False Positives and False Negatives

False negatives can be examined along two dimensions: (1)
Will INTROSPECTRE always flag secret leakage revealed by
the fuzzer? The answer is yes. There are no false negatives,
if a secret leakage is triggered by the fuzzer; and (2) will
INTROSPECTRE discover all known and unknown Meltdown-
like attacks? In terms of known Meltdown-like attacks, all
relevant and applicable known attacks are covered. Also, hy-
perparameters increase INTROSPECTRE coverage of potential
new variants. However, INTROSPECTRE cannot guarantee all
Meltdown attacks will be discovered.

False positives can similarly be examined along the fol-
lowing dimensions: (1) If INTROSPECTRE flags leakage in a
structure, is it guaranteed to be a violation of an isolation
boundary? The answer is yes. There are no false positives
for isolation boundary violations. (2) Are all INTROSPECTRE-
identified leakage cases exploitable? The answer is no, because
this depends on whether a covert channel can be open to
leak that secret. Additional expert analysis will be required
to ascertain if the leakage is exploitable. INTROSPECTRE will
therefore have false positives for exploitable attacks.

IX. CONCLUSION

This paper presented INTROSPECTRE, a design verification
framework for identifying transient execution leakage. We
show that integrating INTROSPECTRE into the RTL design
flow enables a systematic analysis of the entire microarchi-
tectural state of complex processor designs. We integrated
INTROSPECTRE with an RTL simulator and used it to per-
form transient leakage analysis on the open-source RISC-V
BOOM processor. We identified 13 potential transient leakage
scenarios, most of which had not been highlighted on this
processor design before.
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