
A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP

Mengyuan Li∗
The Ohio State University

li.7533@osu.edu

Luca Wilke∗
University of Lübeck

l.wilke@uni-luebeck.de

Jan Wichelmann
University of Lübeck

j.wichelmann@uni-luebeck.de

Thomas Eisenbarth
University of Lübeck

thomas.eisenbarth@uni-luebeck.de

Radu Teodorescu
The Ohio State University
teodores@cse.ohio-state.edu

Yinqian Zhang
Southern University of Science and

Technology
yinqianz@acm.org

Abstract—Hardware-assisted memory encryption offers
strong confidentiality guarantees for trusted execution environ-
ments like Intel SGX and AMD SEV. However, a recent study by
Li et al. presented at USENIX Security 2021 has demonstrated
the CipherLeaks attack, which monitors ciphertext changes in
the special VMSA page. By leaking register values saved by the
VM during context switches, they broke state-of-the-art constant-
time cryptographic implementations, including RSA and ECDSA
in the OpenSSL.

In this paper, we perform a comprehensive study on the cipher-
text side channels. Our work suggests that while the CipherLeaks
attack targets only the VMSA page, a generic ciphertext side-
channel attack may exploit the ciphertext leakage from any
memory pages, including those for kernel data structures, stacks
and heaps. As such, AMD’s existing countermeasures to the Ci-
pherLeaks attack, a firmware patch that introduces randomness
into the ciphertext of the VMSA page, is clearly insufficient. The
root cause of the leakage in AMD SEV’s memory encryption—
the use of a stateless yet unauthenticated encryption mode and
the unrestricted read accesses to the ciphertext of the encrypted
memory—remains unfixed. Given the challenges faced by AMD
to eradicate the vulnerability from the hardware design, we
propose a set of software countermeasures to the ciphertext side
channels, including patches to the OS kernel and cryptographic
libraries. We are working closely with AMD to merge these
changes into affected open-source projects.

I. INTRODUCTION

For years, the main obstacle to cloud adoption has been a
lack of trust in Cloud Service Providers (CSP). The concept
of confidential Virtual Machine (VM) has been enabled by an
emerging security feature in modern CPUs, dubbed Trusted
Execution Environment (TEE), which removes the need to
trust the CSP [15]. Aiming at providing data-in-use protection,
confidential VM uses hardware-based memory encryption to
protect the integrity and the confidentiality of VMs against
both physical access attacks and privileged software-level
attacks. Another key benefit of confidential VM is that any
VM can be deployed as confidential VM on systems that
support them, without costly adaption and rewriting that is
necessary to turn applications into secure enclaves [12]. Due
to the enormous market potential, all main processor vendors

∗The two authors contributed equally to this paper.

have released or are working on releasing confidential VM
features in their server CPU lines, including AMD Secure
Encrypted Virtualization (SEV) [22], Intel Trust Domain Ex-
tension (TDX) [19], and ARM Confidential Compute Archi-
tecture (CCA) [8].

Currently, only AMD’s confidential VM solution—AMD
SEV—is available and has been deployed in public
clouds [15], [28]. Since its first deployment, SEV has been
exhaustively analyzed by the security community. Due to the
powerful adversarial scenario of a malicious hypervisor, sev-
eral weaknesses have been found, including unauthenticated
encryption [10], [14], [35], Nested Page Table (NPT) remap-
ping [17], [29], [30], unprotected I/O [25], and unauthorized
Address Space Identifiers (ASID) [24]. With the newest ver-
sion of SEV—the recently released SEV-SNP (Secure Nested
Paging [4])—most of the attacks are now mitigated.

The only software-based attack that still applied to SEV-
SNP is CIPHERLEAKS [26], a novel side-channel attack where
a malicious hypervisor can steal the secret keys of RSA
and ECDSA algorithms in the OpenSSL implementation by
monitoring the guest VM Save Area (VMSA). Specifically,
SEV’s memory encryption engine adopts a deterministic XOR-
Encrypt-XOR (XEX) mode of operation. For each physical
address, the same 128-bit plaintext block is always encrypted
to the same ciphertext block during the life cycle of the
VM. Meanwhile, whenever there is a guest-host world switch,
register values are encrypted and then stored in the VMSA.
With the power of read access to the guest VM’s VMSA area,
the malicious hypervisor can continuously monitor and record
the ciphertext of encrypted registers. The authors show that
the ciphertext of certain registers (e.g., RAX) can be used to
inspect inner execution states of cryptographic algorithms and
eventually reveal the private key or secrets.

Due to its severity, AMD recently released a microcode
patch (MilanPI-SP3 1.0.0.5) [6] to mitigate the CIPHER-
LEAKS attacks. The microcode patch enables the 3rd gen-
eration AMD EPYC processors (Milan series) to include a
nonce into the encryption of the VMSA area, such that the link
between the plaintext and the ciphertext is broken. As such,
CIPHERLEAKS attacks against register values in the VMSA

337

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Mengyuan Li. Under license to IEEE.
DOI 10.1109/SP46214.2022.00112

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

68

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

are no longer feasible. Note that the patch only changes the
encryption of the VMSA, while the remaining memory space
of the VM is still protected with the same deterministic XEX
encryption as before.

In this paper, we perform a comprehensive study on the
exploitability of leakage caused by ciphertext in encrypted VM
memory and try to answer the question:

Are current cryptography implementations still safe
when an attacker has access to the ciphertext of the
encrypted memory?

We broadly group ciphertext side channel attacks into two
categories: the dictionary attack and the collision attack. We
show that these two classes of attacks can be applied to
general memory regions during cryptographic activities, in-
cluding kernel data structures, stacks, and heaps, which all lead
to key leakage. Most main cryptography libraries (including
OpenSSL, WolfSSL, GnuTLS, OpenSSH, and libgcrypt) are
shown to be vulnerable against the ciphertext side channel.

Contribution. The contributions of this paper can be summa-
rized as follows:
• Systematically studies the ciphertext side channel in the

entire memory of SEV-protected VMs. It shows that the
ciphertext side channel can be exploited in all memory
regions, including kernel structures, stacks, and heaps.
• Presents end-to-end ciphertext side-channel attacks against

the ECDSA implementation of the OpenSSL library. Other
main cryptography libraries (including OpenSSL, WolfSSL,
GnuTLS, OpenSSH, and libgcrypt) are also shown to be
vulnerable to the ciphertext side channel.
• Discusses both hardware and software countermeasures.

Presents a kernel patch to mitigate ciphertext side channels
caused by kernel structures. The ciphertext side channel can
be mitigated when adopting the kernel patch together with
software fixes for cryptographic libraries.

Responsible disclosure. We disclosed the generic ciphertext
side-channel attacks on kernel data structures, heaps, and
stacks to the AMD SEV team in August 2021. Henceforth,
we provided more supplementary materials via email commu-
nications. AMD has acknowledged the vulnerability and had
several discussions with us about potential countermeasures
and stated interest in a kernel level fix. While hardware
countermeasures might not be feasible in the near future for
both performance and design concerns, AMD assisted us with
the development of the software countermeasures, including
both kernel patches (Section VI) and helping us get connected
to other projects like OpenSSL.

We also disclosed the vulnerability on the code level to the
communities of cryptography libraries (including OpenSSL,
WolfSSl, GnuTLS, OpenSSH and libgcrypt). At the time
of writing, we had received feedback from both OpenSSL
and WolfSSL. They both acknowledged the concerns and
recognized the necessity of addressing this vulnerability from
software. WolfSSL has already provided a draft version of
software fixes.

Paper outline. The rest of the paper is organized as fol-
lows: Section II introduces necessary background of this pa-
per; Section III illustrates the root causes of ciphertext side
channels in general; Section IV shows how an attacker can
break current cryptography implementations by monitoring
ciphertext changes in the operating system’s process control
block; Section V shows that the secret leakage can also be
caused by stack variables and heap buffers in user space;
Section VI discusses the potential countermeasures, including
a kernel patch and application fixes; Section VII discusses the
threat of ciphertext side channels to other confidential VM
implementations; Section VIII presents state-of-the-art related
work and Section IX concludes the paper.

II. BACKGROUND

A. Secure Encrypted Virtualization

AMD Secure Encrypted Virtualization (SEV) is a trusted
execution environment (TEE) supported by AMD server-
level EPYC processors with “Zen” Architecture. SEV aims at
providing confidential virtual machines for cloud customers.
In SEV’s threat model, other virtual machines, as well as
the cloud host itself, are considered untrusted. The attacker
may execute arbitrary code at the privileged hypervisor level
and may also have physical access to the machine (e.g.,
DRAM chips) [22]. To achieve this ambitious goal, a dedicated
security subsystem consisting of the AMD Secure Processor
(AMD-SP) and an AES memory encryption engine is intro-
duced by SEV to protect data in use.

Hardware Memory Encryption. When SEV is enabled,
the cryptographic isolation provided by Hardware Memory
Encryption protects the confidentiality of the VM. Specifically,
the VM’s memory pages are always stored in encrypted form,
and the VM encryption keys are guarded by the AMD-SP.
SEV adopts a 128-bit AES encryption with the XOR-Encrypt-
XOR (XEX) encryption mode, which incorporates a physical
address-specific tweak such that the same plaintext yields
different ciphertexts for each memory location. However, for
a fixed address, an identical plaintext always yields the same
ciphertext.

Nested Page Tables (NPT) and the page fault controlled
channel. When SEV is enabled, the address translation be-
tween the VM’s guest physical addresses and the host physical
addresses is managed by the hypervisor with the help of a
NPT, which is a two-layer page table consisting of a Guest
Page Table (GPT) and a Nested Page Table (NPT). The GPT
is managed inside the guest VM and thus protected by the VM
encryption key. The NPT is solely managed by the hypervisor.

As shown in prior work [24], [30], [35], the hypervisor can
leverage the control over the NPT to intercept the execution of
the guest with page granularity. To achieve this, the hypervisor
can unset the Present bit (P bit) in the NPT. The next time
the VM tries to access the corresponding guest physical page,
a nested page fault (NPF) will be generated, revealing the
addresses of the access and the causes.

2338

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

SEV extensions. Two extensions of SEV have been introduced
by AMD to add additional security protections since SEV’s
first release in 2016.

The second generation of SEV is called SEV-ES (Encrypted
State) [21], which was first introduced in 2017. SEV-ES adds
additional protection for CPU registers. Prior to SEV-ES,
CPU registers were stored unencrypted in the Virtual Ma-
chine Control Block (VMCB) during world switches from the
VM to the hypervisor (VMEXIT). In SEV-ES, the hardware
automatically encrypts the registers in a designated Virtual
Machine Save Area (VMSA) along with additional integrity
protection. In addition, a guest-host communication protocol
was introduced for instructions that need to expose regis-
ters to the hypervisor (e.g., CPUID, RDMSR, etc.). A VMM
Communication handler (#VC handler) inside the guest VM
assists the instruction emulation. Specifically, the #VC handler
intercepts those instructions with the help of hardware, passes
necessary register values to a shared area called Guest-Host
Communication Block (GHCB), triggers a special VMEXIT
by the VMGEXIT instruction, and reads the resulting register
values from the GHCB afterwards.

The third generation of SEV is called SEV-SNP (Secure
Nested Paging) [4], which was released in 2020. As a re-
sponse to attacks which used remapping or modification of
guest memory in order to inject code into the VM [35], a
structure called Reverse Map Table (RMP) was introduced.
It maintains a second translation of host physical addresses
to guest physical addresses as well as keeps track of the
ownership of memory pages, and thus, prevents the hypervisor
from modifying or remapping the guest VM’s private memory.
Most of the existing attacks against SEV and SEV-ES can be
mitigated by SEV-SNP (Section VIII).

B. Ciphertext Attacks against SEV-SNP

Ciphertext attacks against SEV-SNP were first introduced
by Li et al. in CIPHERLEAKS [26]. The work exploited
leakage caused by the ciphertext of the registers inside the
VMSA. Specifically, by inspecting the ciphertext stored in
the VMSA during VMEXITs, an attacker could (1) infer the
execution state of a known binary inside the guest VM, and
(2) build a ciphertext-plaintext mapping for certain registers.
For example, the ciphertext of the RAX register could reveal
the return value of function calls. Since the ciphertext was
deterministic, functions that returned the same value produced
an identical ciphertext for the RAX register inside the VMSA,
which is sufficient for the attacker to distinguish secret-related
data content and steal secrets from an application using the
OpenSSL library.

In response to that attack, AMD added additional random-
ization when encrypting and saving register values into the
VMSA during VMEXITs [6]. Thus, the ciphertext of the
register state is now completely different even if the register
values inside CPU did not change between two VMEXITs,
which fully mitigates the CIPHERLEAKS attacks.

C. Off-chip Attacks

Off-chip attacks are usually classified into stolen DIMM at-
tacks and bus snooping attacks. Stolen DIMM attacks directly
grab data from the Non-Volatile Memory (NVM) or perform
cold boot attacks on volatile memory [32]. Bus snooping
attacks target the data transmission between two components
of the computer (e.g., CPU and DRAM). These attacks involve
both data eavesdropping and even data altering [12].

Off-chip attacks are also considered as one of the potential
attacks in a TEE’s threat model [4]. While the plaintext
is protected inside the chip and can hardly be inspected,
all data outside the CPU might be inspected, either on the
external memory buses or on the NVM. TEEs like Intel SGX
and AMD SEV protect data outside the CPU by an in-chip
memory encryption engine. While it is widely accepted that
attacks by monitoring the data bus flow can be thwarted by
memory encryption [33], researchers move their attention to
the unencrypted address bus [12]. Recent results [23], [31]
showed that an attacker could recover some data by monitoring
memory address patterns. For those attacks, an interposer is
needed to be installed on the DIMM socket. The interposer
can duplicate signals on the memory bus and pass the data to
a signal analyzer on the fly with CPU cycle granularity.

D. Operating System Context Switch

Under x86 64, there are four different privilege levels that
can be used to implement a hierarchy in the software [3, Sec.
4.9.1]. Under Linux, ring 0 is used to run the kernel, while
ring 3 is used to run user space applications. When a privilege
level change occurs, e.g. due to an interrupt or exception,
the CPU automatically switches to a separate stack and fills
it with some information about the previous software. The
stacks are configured in the Task State Segment (TSS). The
register values, however, remain unchanged and are not stored
by a hardware mechanism [3, Sec. 12.2.5]. Under Linux, one
TSS per CPU is used, meaning that each CPU has its own
set of stacks. Most Interruptd/Exception handlers use TSS
managed as an entry point to intialy store the register values,
before eventually copying them to the so-called thread stack.
The thread stack is part of the Process Control Block (PCB,
also called task_struct in Linux), a data structure that
bundles all information related to a process/thread. The saved
registers are referred to as the pt_regs structure, which
simply consists of the register values stored next to each other.

Note that in other scenarios a context switch is also used
to describe a switch between different processes and threads.
In this work, we always refer to the aforementioned privilege
level change if not stated otherwise.

III. A GENERIC CIPHERTEXT SIDE CHANNEL

In this section, we are going to show that the ciphertext-
based attack demonstrated in the CIPHERLEAKS paper is not
limited to the VMSA register storage mechanism of SEV-
SNP, but applies to any deterministically encrypted memory.
We define a generic attacker model and show two primitives
that allow the attacker to infer memory contents and runtime

3339

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

behavior of any application which relies on deterministically
encrypted memory for protecting the confidentiality.

A. Attacker Model

We consider the standard threat model of confidential VM:
The attacker has both software and physical access to the
system, i.e., they have unrestricted administrator capabilities
and can physically access the machine. The confidential VM
shields the VM’s secrets from the attacker by encrypting the
memory consumed by the user’s application, using a deter-
ministic memory encryption scheme with an address-based
tweak, such that the ciphertext depends on the encryption key,
the plaintext and the current physical address. Specifically, we
target SEV-SNP, which also prevents the attacker from remap-
ping memory containing ciphertext to other physical addresses,
denies them write access to any encrypted memory, but leaves
the attacker the ability to read ciphertext by software.

B. Attack Primitives

We suggest two general methods for exploiting deterministic
memory encryption: A dictionary attack and a collision attack.

Dictionary attack. A dictionary attack is applicable when a
secret-dependent variable features a small, predictable value
range with a fixed memory address. In this case, the attacker
can build a dictionary of ciphertext-plaintext mappings for
this variable and selectively recover the plaintext. This is a
generalization of the approach taken in the CIPHERLEAKS
attack, where the authors learned ciphertext mappings for the
registers stored in the VMSA.

Contrary to CIPHERLEAKS, the dictionary attack targets
arbitrary memory locations and variable types. Two exam-
ples about recovering ECDSA key using stack variables
(Section V-A), or registers stored during a context switch
(Section IV) are presented. While this attack is quite powerful,
it is restricted by the number of possible plaintexts for a
given encryption block, since the attacker cannot tell which
part of the plaintext has changed when observing a new
ciphertext. If the targeted variable shares an encryption block
with other variables which get new values frequently (e.g., a
loop counter), the number of possible plaintexts becomes too
large to efficiently build a mapping, as is illustrated in Figure 1.
We use this fact in Section VI-B to propose a countermeasure
which appends random nonces to small variables.

Collision attack. A collision attack transfers the concept of
secret dependent code execution to memory writes. In secret-
dependent branching, the attacker exploits that the targeted
algorithm executes a certain code region depending on spe-
cific values of a secret value (e.g., an if statement checking
key bits). By observing the access pattern to the respective
code chunks, the attacker can learn the secret. A common
countermeasure is so-called constant-time code, i.e. code that
always exhibits the same control flow and memory accesses,
independent of the secret. This is usually achieved by convert-
ing secret-dependent branch decisions into fixed expressions,
which compute all possible results of a given operation and

128-bit Encryption Blocks

- Secret noncei

i Secret -
- Secret -(a)

(b)

(c)

Unchanged

Changeable

Figure 1: Encryption block configurations with different ex-
ploitability by the dictionary attack. In the first scenario (a),
most of the block’s plaintext is constant, with the secret
being the only variable. Thus, the attacker can build a one-
to-one mapping of ciphertexts to secrets. In (b), the block
also contains a loop counter i, so there are many different
ciphertexts mapping to the same secret. If the attacker can
always observe the secret for a specific fixed value of i, they
may still be able to build a dictionary, as this is equivalent to
scenario (a). In the last scenario (c), the secret is followed by a
random nonce which is regenerated before spilling secret to the
memory. This prevents the attacker from creating a dictionary,
as he never observes the same ciphertext twice.

then use a mask to pick the desired one. One such primitive is
the constant time swap CSWAP (Algorithm 1), which is used
for example by the Montgomery ladder: CSWAP takes two
variables a and b and a (secret) decision bit c. If the bit is
set, the values of a and b are swapped; if the bit is cleared,
a and b remain unchanged. The depicted code gadget always
executes the same amount of instructions in the same order,
and always accesses the same memory addresses, making it
resistant against microarchitectural side-channel attacks.

But, if the attacker is able to observe whether the values
of a or b change, they can immediately learn the decision bit
ci. The collision attack again exploits the fact that ciphertext
blocks are deterministic. However, contrary to the dictionary
attack, the attacker does not aim to learn the direct map-
ping of ciphertexts to actual plaintext values, but they only
check whether certain ciphertexts repeat or change. Going
even further, if the attacker knows that a memory write was
executed (e.g., through a control flow side-channel), but they
do not see any ciphertext change, they learn that the instruction
wrote the same value as was present in memory before. Given
knowledge of the executed program, they may use this to infer
more information other than the traditional control flow.

IV. LEAKAGE DUE TO CONTEXT SWITCH

We now take the dictionary attack primitive from Section III
and show how it can be used for extracting register values from
a VM running with SEV-SNP. After CIPHERLEAKS, AMD
published a firmware patch which added protection to the
VMSA area [6]. However, the VM-hypervisor world switch
is not the only occasion where the entire register state is
written to memory. When moving from user space to kernel
space (e.g., after an interrupt or an exception), the Linux
kernel pushes all register values of the user program onto
the stack, and then copies those into the PCB of the current

4340

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Constant time swap

Require: Byte arrays a, b of same length and decision bit c
1: procedure CSWAP(a, b, c)
2: mask ← 0− c . 0− 1 underflows to 0xff
3: for i = 0 to i = length(a) do
4: x← a[i]⊕ b[i]
5: x← x & mask
6: a[i]← a[i]⊕ x
7: b[i]← b[i]⊕ x
8: end for
9: end procedure

thread, such that the exception handler can access the register
values through the pt_regs structure. The PCB address is
fixed per-thread, allowing an attacker to build a dictionary
of register values by causing repeated interrupts within the
VM and observing the resulting ciphertexts. We show how an
attacker can use nested page faults to indirectly trigger internal
user-kernel context switches and use the learned register
values to attack the constant-time ECDSA implementation of
OpenSSL. Given their source code, similar attacks should also
be applicable in WolfSSL, GnuTLS, OpenSSH, and libgcrypt.

A. Leaking Register Values via Context Switches

Forcing context switches in the VM. SEV-SNP restricts the
hypervisor’s ability to inject interrupts and exceptions into the
VM, so we will show how a malicious hypervisor can work
around this limitation by forcing the VM to pause at a certain
execution point until a “natural” internal context switch is
triggered, which should also be detectable by the hypervisor.

First, the hypervisor interrupts the targeted application at
certain execution points by using the well-known page fault
controlled channel, that allows the attacker to force a NPF
when the VM tries to access or execute a given page. However,
the NPF itself does not lead to a context switch inside the
VM, as it is immediately intercepted by the hypervisor. To
do so, the hypervisor now simply waits for a short amount
of time and then resumes the VM without handling the
NPF. As a result, the attacker can trap the execution of the
targeted program and the victim application cannot resume its
execution. After a short amount of waiting time, a time-driven
internal context switch will be performed by the guest OS,
which updates the victim application’s register values in main
memory (pt_regs).

Even though the internal context switch is out of the
hypervisor’s control, we show that the VM-host interaction
mechanism adopted by SEV can work as an indicator of
a finished context switch. Specifically, we observed that
the guest VM has frequent interaction with the hypervisor
through reading and writing hypervisor-managed registers of
the Advanced Programmable Interrupt Controller (APIC), like
IA32_X2APIC_TMR1, which are used for scheduling and
timekeeping. These RDMSR and WRMSR accesses result in a
special exception called #VC exception inside the VM, as they

VM Hypervisor

RDMSR
VMGEXIT with
parameters
in GHCB

Update
GHCB

Resume
VC handler

Continue
execution

VC handler

Read GHCB
Update pt_regs

Emulate
instruction

(a) #VC handler

VMPL3 VMPL0 Hypervisor

RDMSR
Assign to
VMPL0

Hypercall with
parameters

Response
request

Emulate
instruction

Update VMPL3
save state

Resume
VMPL3

Continue
execution

(b) VMPL0 emulation

Figure 2: Workflow of how #VC exceptions are handled. Red
arrows represent a context switch between processes.

require the VM to share registers with the hypervisor. The #VC
exception handler inside the VM then calls VMGEXIT after
putting the necessary register values into the GHCB (shown
in Figure 2a). As the #VC exception is handled in VM’s kernel
space, a VMGEXIT also indicates a user-kernel context switch.
Thus, the hypervisor simply waits for a VMGEXIT with the
appropriate exit code, as an indicator of updated registers’
ciphertext in pt_regs. We analyze the necessary pause time
for triggering a VMGEXIT in Section IV-D.

Other than the traditional #VC handler mechanism, SEV-
SNP has another option to adopt a more secure VM-host
communication mechanism that moves the APIC emulation
into the trust domain of the guest VM. As shown in Figure 2b,
the VM is divided into multiple Virtual Machine Privilege
Levels (VMPLs) that provide additional hardware isolated
abstraction layers. However, the hypervisor can still sense a
finished context switch due to the interaction triggered by the
hypercall from VMPL0.

Locating pt_regs after VMEXIT. Besides using the
VMGEXIT to detect a context switch, the attacker can also
use it to locate the pt_regs struct. For that, after reaching a
VMGEXIT, the attacker clears the P bit for all guest pages
and resumes the VM. This will hand back control to the
#VC handler in the VM, which will subsequently try to copy
the results of the emulated instruction from the GHCB to
pt_regs. Since all guest pages were marked as not present,
this causes a nested page fault. In our experiments, the second
NPF caused by data page read access after resuming the VM is
the memory page containing pt_regs. We did not encounter
any false positives during our experiments.

B. Attacking Constant-time ECDSA

In this section, we demonstrate how to use the context
switch primitive from the previous section to attack the
constant-time ECDSA implementation in OpenSSL. More
precisely, we show that the adversary can infer the nonce
k in the constant-time ECDSA algorithm by inspecting the
ciphertext changes in the pt_regs structure of the targeted
process. This can then be used to recover the secret key.

5341

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

1 int i, cardinality_bits, group_top, kbit, pbit,
Z_is_one;

2 ...
3 for (i = cardinality_bits - 1; i >= 0; i--) {
4 kbit = BN_is_bit_set(k, i) ˆ pbit;
5 // kbit is used to determine the conditional swap
6 EC_POINT_CSWAP(kbit,r,s,group_top,Z_is_one);
7 // single step of the Montgomery ladder
8 if (!ec_point_ladder_step(group, r, s, p, ctx)){
9 ERR_raise(ERR_LIB_EC,

10 EC_R_LADDER_STEP_FAILURE);
11 goto err;
12 }
13 // pbit helps to merge CSWAP with that of the next

iteration
14 pbit ˆ= kbit;
15 }

Listing 1: Part of the elliptic curve scalar multiplication
ec_scalar_mul_ladder() from OpenSSL. The function
uses the Montgomery ladder algorithm and constant-time
primitives to protect the secret scalar k against side channels.

The Elliptic Curve Digital Signature Algorithm (ECDSA)
is a widely used signature algorithm that works as follows:

1) Prepare the curve parameters (CURVE, G, n), where G
is the elliptic curve base point of prime order n.

2) Prepare a key pair by choosing uniform dA ∈ Z∗
n. dA is

the private key. The public key is QA = dAG.
3) Generate a cryptographically secure random integer k ∈

Z∗
n (also known as the nonce k).

4) Calculate a non-zero r by r = (kG)x mod n (only the
x-coordinate of the resulting point is used).

5) Calculate s = k−1(h(m)+rdA) mod n, where m is the
message and h(m) is a hash of m. (r, s) then forms the
ECDSA signature pair.

A predictable or leaked nonce k allows to immediately
recover the private key dA by:

dA = r−1((ks)− h(m)) mod n.

Targeted ECDSA implementation. Our attack targets the
ECDSA implementation of the OpenSSL library1 for the curve
secp384r1 that is commonly used for TLS/SSL connec-
tions. The goal of our attack is to steal the nonce k and
thus infer the private key dA. In OpenSSL, ECDSA signing
is handled by the ECDSA_do_sign function, which in turn
calls ec_scalar_mul_ladder to calculate r. Note that
the implementation of the function is specifically designed to
protect k against side channel attacks (Listing 1).

Identify instruction pages. Besides monitoring context
switches and locating pt_regs via the methods shown in
the previous part, we also need to identify the appropriate
code locations in order to intercept the guest VM at proper
execution points, which gives the attacker the opportunity
to extract valuable ciphertext. In our work, we combine the
widely-used page fault controlled side channel [25], [30], [34],
[35] with performance counters to build a fine-grained tool

1Commit: c4b2c53fadb158bee34aef90d5a7d500aead1f70.

to identify instruction pages’ physical addresses. Specifically,
we make use of the Retired Instructions counter [2, Event
PMCx0C0], which can be configured to only count the amount
of retired instructions inside the VM and thus reveal the
number of instructions executed between two pages faults. The
attacker can simply build a template of the retired instruction
counts for code paths in a known binary. In our experiments,
we were able to locate the target pages on the fly, without
relying on repeated access patterns.

C. End-to-end attack against Nginx

We now show the steps needed to steal the nonce k
generated by an Nginx webserver. The nonce, together with
the corresponding signature, allows the attacker to recover the
secret key of the server.

À Send HTTPS request. The attacker sends a HTTPS request
to the Nginx server in order to trigger the targeted code paths.

Á Locate target function in physical memory. Right after
sending the HTTPS request, the attacker clears the P bit of
all VM pages. The attacker then locates the guest physical
addresses of the functions ec_scalar_mul_ladder()
(gPA0) and BN_is_bit_set (gPA1) using the page fault
channel combined with the retired instruction counter.

Â Locate pt_regs. The attacker pauses the VM for a while
(e.g., by trapping the VM in the NPF handler for a few
milliseconds) when they intercept a NPF of gPA0. They then
use the method from Section IV-A to find the physical address
gPA3 of the current thread’s pt_regs structure.

Ã Single-step loop iterations. The attacker iteratively
clears the P bit of gPA1 to pause the VM when it en-
ters BN_is_bit_set. After intercepting the correspond-
ing NPF for gPA1, the attacker clears the P bit for
gPA0, causing an NPF when the ret instruction inside
BN_is_bit_set is executed, i.e. the function tries to return
to ec_scalar_mul_ladder(). The attacker then pauses
the VM in the gPA0 NPF for a while (several milliseconds)
and resumes the VM without handling the NPF. The attacker
might observe several consecutive NPFs for gPA0, but keeps
the P bit cleared until a VMGEXIT is encountered.

Ä Record the ciphertext and recover the nonce k. The
attacker records the ciphertext of the RAX field in pt_regs
after the VMGEXIT, which contains the return value of
BN_is_bit_set at this execution point. The conjunct reg-
ister stored near RAX in pt_regs is R8, which remains
unchanged during the for loop. The attacker then sets the
P bit of gPA0, clear the P bit of gPA1 in order to intercept
BN_is_bit_set for the next iteration and repeat step Ã.
After 384 iterations, the attacker has collected a sequence of
ciphertexts. Since RAX can only take two distinct values, they
can recover the nonce k with only 1 bit of entropy.

D. Evaluation

All experiments throughout this paper were conducted
on an AMD EPYC 7763 64-Core Processor. The host

6342

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

kernel (branch sev-snp-part2-rfc4), QEMU (branch
sev-snp-devel), and OVMF (branch sev-snp-rfc-5)
were directly forked from AMD SEV’s GitHub repository [5].
The victim VMs were protected by SEV-SNP and used
the unmodified guest kernel provided by AMD (branch
sev-snp-part2-rfc4). The victim VMs were configured
with 2GB DRAM, 30GB disk, and one virtual CPU (vCPU).
However, the capacity of the victim VMs (including vCPU,
DRAM, and disk) is not relevant for the attack procedure.

For the attack on Nginx, an unmodified Nginx server
and an OpenSSL library were installed inside the victim
VMs. The Nginx version is 1.21.3, which was released
on 07 Sep. 2021. The Nginx server supports HTTPS
requests with a self-signed ECC certificate with 384-
bit key. The curve used is secp384r1. The OpenSSL
was forked from OpenSSL’s Github repository (Commit:
c4b2c53fadb158bee34aef90d5a7d500aead1f70)
and was modified to log the ground truth after the signing
procedure, so we could verify the extracted secret.

Proof of concept code is available at https://github.com/
UzL-ITS/sev-ciphertext-side-channels/.

Identifying target functions. To estimate the attacker’s ability
to locate target functions on the fly, we sent 500 consecutive
HTTPS requests. For each request, we monitored the page
access pattern along with the number of retired instructions
and tried to locate the target functions in real-time. The refer-
ence page access pattern and the corresponding performance
counter values were collected in a different VM with the
same Nginx and OpenSSL version, but without SEV-SNP’s
protection and with a different kernel version, to show the
pattern’s independence of the exact kernel version.

In 496 out of those 500 requests, the target function’s
physical addresses were successfully located, while a miss was
reported for the remaining four requests. The average time
needed to locate the target functions was 59.28 milliseconds
with a standard deviation of 2.12 milliseconds. No false
positive was reported.

Context-switch latency. To collect the ciphertext of the up-
dated pt_regs, the attacker needs to wait until an internal
context switch, which is the most time-consuming part of
the end-to-end attack. In our implementation, the attacker
pauses the VM by calling udelay(<interval>), which
takes a delay in microseconds. We evaluated both the proper
interval for a direct context switch and the average waiting
time. Since the attacker doesn’t set the P bit at the execution
point unless observing the VMGEXIT, the attacker might get
several repeated NPFs in a row. Figure 3a shows the number
of NPFs we observed under different intervals. We usually
directly detected a context switch when interval was larger
than 2000 (two milliseconds). Figure 3b shows the average
waiting time. It usually took four milliseconds until an internal
context switch occurred, thus we paused the victim VM by
using udelay(4000) in our attack.

Performance. We repeated the attack 50 times and measured
the overall time for an end-to-end attack. The average time

0 2000 4000
Interval(udelay)

0

20

40

60

N
PF

s

(a) #NPFs for udelay intervals.

500 1000 2000 4000
Interval(udelay)

4

6

8

Ti
m

e(
m

s)

(b) Avg. time for context switch.

Figure 3: Relationship between udelay interval and internal
context switch.

was 8.53 seconds with a standard deviation of 0.33 seconds.
The main latency is caused by waiting for an interval context
switch. For a 384-bit nonce k, the attacker can intercept 384
* 5 = 1920 NPFs for gPA0 in total. In our setting, we chose
to wait for a context switch every time when intercepting
an NPF of gPA0. However, for each iteration, only one
out of five NPFs is caused by the ret instruction inside
BN_is_bit_set. Thus, the attacker could also choose to
only wait and grab ciphertext at that NPF. By doing that,
approximately 6 seconds (384 * 4 * 4ms) waiting time can be
avoided. However, one side effect is that some internal events
(e.g., an unexpected context switch) might cause a repeated
NPF of gPA0, which will confuse the attacker and reduce the
accuracy. In our implementation, the average accuracy for the
recovered nonce k is 89.1%.

V. EXPLOITING MEMORY ACCESSES IN USER SPACE

In the previous section, we have seen how an attacker can
exploit the context switch mechanism of the Linux OS inside
the VM to leak register values of running processes. We now
turn our attention to leakages directly caused by the victim
application’s memory access behavior. We demonstrate that
the OpenSSL ECDSA code from the previous section is also
vulnerable to the dictionary attack targeting stack variables,
and show an example of the collision attack against the EdDSA
implementation in OpenSSH.

A. Breaking Constant-time ECDSA via Dictionary Attack

As shown in Listing 1, ec_scalar_mul_ladder uses
several local integer variables: kbit controls the conditional
swaps by EC_POINT_CSWAP in the for loop. Assuming that
ki refers to the i-th bit of k, at the beginning of a loop iteration,
pbit stores ki−1. After calling BN_is_bit_set(k, i)
to retrieve ki, kbit stores ki−1⊕ ki−2 (XOR). pbit is later
updated to ki at the end of the iteration.

Stack layout. We target the 16-byte memory block where
pbit is stored. By our observation, the memory block con-
taining pbit also contains additional variables, which is not
surprising given the small size of pbit. In our case, pbit,
kbit and cardinality_bits all share the same 16-byte
memory block. The cardinality_bits variable does not
change during the runtime of the for loop from Listing 1.
Thus, the value range of the ciphertext is only dependent on
the secret, i.e. pbit and kbit.

7343

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

Table I: Possible pbit and kbit pairs when intercepting
BN_is_bit_set() in ec_scalar_mul_ladder(). The let-
ters A to D represent the 16-byte ciphertexts the attacker may observe,
which depend on the values of kbit and pbit. The value of kbit
and pbit in the i+ 1-th iteration is updated depending on ki.

i-th iteration i+ 1-th iteration
pbit kbit Pair ki pbit kbit Pair

0 0 A 0 0 0 A
0 0 A 1 1 1 D
0 1 B 0 0 0 A
0 1 B 1 1 1 D
1 0 C 0 0 1 B
1 0 C 1 1 0 C
1 1 D 0 0 1 B
1 1 D 1 1 0 C

Recovering k from ciphertext pairs. Recall that, at the end
of each loop iteration, pbit stores the i-th bit of the nonce k.
The attacker thus can recover k if they can infer the value of
pbit in each iteration. We use gPA0 to denote the guest
physical address of the stack page where pbit is stored,
and gPA1 for the address of BN_is_bit_set(). Similar
to the attack in Section IV-A, the attacker uses the page fault
controlled channel in combination with the retired instructions
performance counter for locating the pages.

The attacker records the ciphertext of gPA0 when he
intercepts the NPF of BN_is_bit_set() (gPA1), which
corresponds to the state after the previous loop iteration (i.e.,
pbit still has its old value). As shown in Table I, in the ith

iteration, the attacker can observe one of four possible pbit
and kbit pairs. We use the letters A to D to denote the four
possible ciphertexts. At the end of the i-th iteration, pbit and
kbit are updated according to ki (0 or 1). Thus, when the
attacker intercepts the NPF of gPA1 in the i+ 1-th iteration,
there are 8 possible observation cases.

They then analyze the ciphertext of gPA0 to (1) locate
the offset of the 16-byte block where pbit is in and to (2)
infer the value of pbit for this iteration. For (1), the attacker
can easily identify the offset because they should observe the
four different ciphertext randomly but repeatedly at a certain
offset, which reveals the ciphertext changes of the pair (pbit,
kbit). For (2), the attacker can infer the value of pbit
by analyzing two subsequent ciphertext of (pbit, kbit) as
shown in Table I. The attacker applies the following algorithm
to recover the pbit sequence: In the first iteration, both kbit
and pbit are initialized to 1, thus producing ciphertext D.
The attacker then finds an n-th iteration that has the same
ciphertext as the following n + 1-th iteration. Then (pbit,
kbit) for the n-th and n + 1-th iterations must either be A
or C. If the next n+ x-th iteration with a different ciphertext
produces a ciphertext other than D, then the ciphertext for nth

and n + 1th iterations must be C. Otherwise, the ciphertext
represents A. After identifying A, C, and D, the remaining
ciphertext represents B.

1) Attack Steps:

À Locate the two target physical addresses. The attacker
first needs to locate the guest physical addresses of the target
stack page gPA0 and the target function page gPA1 . We use

the same methods as in Section IV-A to locate the pages.

Á Intercept the for loop. The attacker iteratively clears the
P bit in the NPT to interrupt the execution of the for loop.
Specifically, the attacker clears the P bit of gPA0 when a NPF
of gPA1 is intercepted and clears the P bit of gPA1 when a
NPF of gPA0 is intercepted later. The attacker thus tracks the
internal execution states of the for loop.

Â Record the ciphertext of gPA0. Given the structure of
the loop, there are 5 NPFs for both gPA0 and gPA1 for one
iteration. Thus, for a 256-bit nonce k, the attacker needs to
intercept 256 * 5 = 1280 NPFs for both gPA0 and gPA1.
In each iteration, the first NPF for gPA0 is triggered when
BN_is_bit_set finishes execution and the program tries
to touch the stack page where (pbit and kbit) is in. At this
execution point, both kbit and the pbit are not yet updated.
The attacker records the ciphertext of the whole stack page
since the offset of pbit and kbit change slightly between
different runs of the algorithms.

Ã Infer the value of k. After all 256 iterations of the for
loop, the attacker determines the offset and recovers the nonce
k using the strategy we introduced in Section V-A.

2) Evaluation: The test platform was the same as described
in Section IV-D. Instead of targeting the secp384r1 curve,
we picked a different curve secp256k1, which is widely
used in Bitcoin, to show that the attack works for different
curves. The victim VM computes an ECDSA signature by call-
ing ECDSA_do_sign in the OpenSSL library. We repeated
the attack 50 times. In 92% of the attempts, we could recover
the nonce k with 100% accuracy. After identifying the target
functions, which we only needed to do once, the average time
used to conduct the attack is 1.23 seconds with a standard
deviation of 1.01 seconds.

B. Breaking Constant-time EdDSA via collision attack

In the previous attack case studies we have used the dic-
tionary attack primitive by guessing and recording plaintext-
ciphertext mappings. We now show how the attacker can break
constant-time EdDSA by monitoring the collision of the secret
dependent value’s ciphertext. While the attack would also be
applicable to the constant time swaps used by the ECDSA
variant described above, we show how the collision attack
can work on the constant time EdDSA implementation of
OpenSSH with the ed25519 curve. As this implementation
processes the secret in a batched manner, it is less susceptible
to the dictionary attack previously applied to the ECDSA
implementations.

The EdDSA signature algorithm [9] works similar to
ECDSA, with the most noticeable difference being the deter-
ministic nonce generation to prevent attacks based on flawed
random number generators. The algorithm works as follows:

1) Provide a valid EdDSA parameter set (CURVE, G, n, c,
l, H) with 2c ·l = |CURVE|, where G is the elliptic curve
base point of prime order l and thus l · G = 0. H is a
cryptographic hash function with 2b output bits.

8344

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

1 void ge25519_scalarmult_base(ge25519_p3 *r, const
sc25519 *k) {

2 signed char b[85];
3 int i;
4 ge25519_aff t;
5 sc25519_window3(b,k);
6 choose_t((ge25519_aff *)r, 0, b[0]);
7 fe25519_setone(&r->z);
8 fe25519_mul(&r->t, &r->x, &r->y);
9 for(i=1;i<85;i++) {

10 choose_t(&t, (unsigned long long) i, b[i]);
11 ge25519_mixadd2(r, &t);
12 }

Listing 2: Function performing the multiplication of the secret
scalar with the curve base point. In the original code, the
variable k is named s.

2) Prepare a key pair. Choose a secure random b-bit string
dA as the secret key. Calculate the public key QA = dsG,
where ds is derived from the hash of dA.

3) Deterministically compute a nonce for the signature as
k = H(Hb,...,2b−1(dA) ‖m), where m is the message.

4) Calculate R = kG.
5) Calculate s = k+H(R ‖QA ‖m) · ds mod l. The final

EdDSA signature is defined as the tuple (R, s).

Targeted EdDSA implementation. We target the EdDSA
implementation of OpenSSH 8.2p1, which is the version
shipped with the latest Ubuntu LTS 20.04. The targeted
implementation uses the ed25519 curve. More precisely, we
attack the multiplication R = kG to learn k which then allows
us to recover ds from s, by computing

ds = (s− k) ·H(R ‖QA ‖m)−1 mod l.

While ds is not the actual private key dA, it is sufficient to
create valid signatures.

Listing 2 shows the function performing the calculation k·G.
The arithmetic is implemented using a windowing technique
with pre-computed partial sums in a lookup table. First, in
line 6, the secret scalar is broken down into 3-bit chunks.
In addition, a transformation is applied converting the chunks
to signed values. However, this is reversible. Lines 12 and
13 in the for loop contain the main multiplication work. In
choose_t the partial sum is loaded from the precomputation
table in a cache attack resistant manner by accessing multiple
values and choosing the correct one using a constant time swap
operation. Line 13 performs the actual multiplication.

For our attack, we focus on the constant time swap operation
cmov_aff that is used in choose_t. Both functions are
shown in Listing 3. The idea of the attack is to use the
collision attack to leak the value of b, which corresponds
to ds in our EdDSA description, in the calls to cmov_aff.
We compare the values of t before and after the function
call. While the constant-time swap will write to the memory
locations regardless of the value of b, to be secure against
cache and timing side channels, the actual value that is written
still depends on b. Although the written data has a large
value range, making a dictionary attack infeasible, it suffices
to compare the ciphertext of t before and after the call to

1 static void cmov_aff(ge25519_aff *r, const
ge25519_aff *p, unsigned char b) {

2 fe25519_cmov(&r->x, &p->x, b);
3 fe25519_cmov(&r->y, &p->y, b);
4 }
5

6 static void choose_t(ge25519_aff *t, unsigned long
long pos, signed char b) {

7 fe25519 v;
8 int i = 0;
9 *t = ge25519_base_multiples_affine[5*pos+0];

10 cmov_aff(t, &ge25519_base_multiples_affine[5*pos
+1],equal(b,1) | equal(b,-1));

11 cmov_aff(t, &ge25519_base_multiples_affine[5*pos
+2],equal(b,2) | equal(b,-2));

12 cmov_aff(t, &ge25519_base_multiples_affine[5*pos
+3],equal(b,3) | equal(b,-3));

13 cmov_aff(t, &ge25519_base_multiples_affine[5*pos
+4],equal(b,-4));

14 fe25519_neg(&v, &t->x);
15 fe25519_cmov(&t->x, &v, negative(b));
16 }

Listing 3: Swap and lookup table access functions.

cmov_aff without knowing the plaintext for the ciphertext.
The information whether the ciphertext value has changed or
not allows us to directly infer b.

After leaking the value of b, the attacker can invert the
operations applied in sc25519_window3 (Listing 2) to
recover the secret scalar k. Knowing k and the corresponding
signature (R, s) allows to recover ds, which is sufficient to
create arbitrary valid signatures. Knowing ds is not equal
to knowing the secret key dA, as the latter is still required
to compute the nonce k according to step 3. However, only
a party knowing the private key dA can detect this subtle
difference.

1) Attack Steps:

À Trigger the OpenSSH server. The attacker opens an SSH
connection with the server, and explicitly requests the usage of
the EdDSA key. EdDSA is enabled in the default configuration
under Ubuntu.

Á Locate the target physical addresses. The attacker uses
the page fault controlled channel and the performance counter
technique from Section Section IV-A) to infer the physical
addresses of the choose_t and fe25519_cmov functions.

Â Intercept execution before and after the constant
time swap operation. The attacker then uses the page fault
controlled channel to intercept the execution of the VM by
unsetting the P bit of the targeted pages in the NPT.

Ã Take snapshots of the buffer t. The attacker obtains
the physical address of the buffer t by tracking the write
access pattern during the execution of the constant time swap
operation using the NPF side channel. The attacker then steps
the loop using the page fault controlled channel and takes
snapshots of the buffer t in each iteration.

Ä Recover the secret scalar t. Using the snapshots of
the buffer t before and after each call to fe25519_cmov
in choose_t (note that cmov_aff wraps this func-
tion), the attacker can immediately deduce the value of

9345

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

b. After knowing the value of b, the attacker inverts the
windowing and sign transformation operations applied in
sc25519_window3(b,s) to obtain the secret scalar k.
The attacker uses the first parameter R of the signature that
the server sends in step À to validate the value of k, and
extracts the signing secret ds from the second parameter S of
the signature using k.

2) Evaluation: We ran the end-to-end attack 500 times.
In 86% of the attacks, we could fully recover the signing
secret with 100% accuracy. Of the failed attack runs, only
7 where due to errors in detecting the correct code pages. The
remaining errors are most likely misdetections of the memory
location of the buffer t. The average runtime of the attack
was 7.9 seconds with 2.2 seconds standard deviation.

VI. COUNTERMEASURES

There are two categories of countermeasures against the
attacks presented in this paper: First, the underlying issue may
be addressed at the architectural level, which would likely be
the most reliable approach. Otherwise, the identified problems
can be also tackled at the software level, with a certain
performance overhead. We discuss both hardware/architecture-
based and software-based countermeasures, and point out
methods for hardening existing software against the attacks
presented in this paper.

A. Architectural Countermeasures

There are two possible hardware approaches for closing the
ciphertext side channels. However, both approaches introduce
high overhead.

First, one may change the encryption mode of SEV to
use probabilistic encryption: a random nonce or incremental
counter is included in the encryption and is updated on
each memory write, effectively randomizing the resulting
ciphertexts on each write. However, probabilistic memory
encryption requires additional memory for storing the nonces.
For example, Intel SGX combines AES-based probabilistic
encryption with MACs to achieve confidentiality, integrity and
replay protection. In SGX, data is encrypted in a tweaked
counter mode, where the nonce depends on both the physical
address of the encrypted memory block and a 56 bit counter
value, to ensure replay protection [16]. The counter values are
kept in the integrity tree, together with the MAC tags that
ensure integrity protection. Only the head nodes of the tree
are stored on-chip, while the remaining integrity tree remains
in memory and needs to be checked on each memory access,
resulting in a significant memory and latency overhead.

A second approach is preventing the attacker from reading
the VM’s physical memory: On a software/firmware layer,
this could be achieved by using a similar RMP mechanics
as in SEV-SNP (Section II-A), which already prevents write
accesses through an additional RMP check. However, this
would introduce a certain overhead when applied to all read
operations due to the more frequent read access and the extra
RMP lookup. For example, for a single read access inside the
VM, a series of RMP checks are needed, including four checks

for the 4-level GPT and one check for the data page. For each
GPT level, four additional RMP checks are needed for the
4-level NPT. In addition, on-chip access control may still be
susceptible to the off-chip attacks described in Section II-C.

B. Software-based Countermeasures

While hardware-based countermeasures would be prefer-
able due to stronger security guarantees, their feasibility and
practicality demand further validation. Thus, in the following
sections, we describe general methods for mitigating the
vulnerabilities on a software level. There is no single software-
based method that is perfectly suited for all scenarios, as kernel
structures, stack, and heap are all vulnerable. Thus, we present
how applications can mitigate ciphertext side channels in three
different ways, building on the assumption, that register values
are immune to the ciphertext side channel. However, as shown
in Section IV, this is not the case, as the kernel stores the
registers’ content in memory upon context switches. Thus,
we also present how the ciphertext side channel caused by
register states stored inside kernel structures can be mitigated
with a kernel patch, to achieve the invariant of secure registers
(Section VI-C), and measure the kernel patch performance
(Section VI-D).

Secret-aware register allocation. If secret-related variables
would fit into a register, but are kept in memory due to register
pressure, changing the register allocation strategy may be
worth pursuing. The secret-related variables can be protected
by staying inside the register during their lifecycle and never
being spilled to memory.

In order to do that, compiler-level modifications are needed.
Even though developers can suggest the compiler to keep some
variables into registers by applying a register hint (e.g.,
register int var;), the variables are not guaranteed to
be placed inside registers. Thus, a compiler can be modified
to prioritize variables marked as ‘secret’ when allocating
registers. An example of a similar scheme is GINSENG [37],
which employs a custom register allocation strategy and a
secure storage in a TEE to shield sensitive variables from
a malicious operating system. In case a register containing a
secret must be spilled to the stack anyway (e.g., it is frequently
used in function calls or large variables), it can be protected
using a random mask as described in the later software-based
probabilistic encryption part.

Limiting reuse of memory locations. Both the dictionary
attack and the collision attack rely on repeated writes to a
fixed physical memory address. Thus, limiting reuse of a fixed
memory address leads to fresh ciphertext and can prevent the
attacker from inferring secrets via the ciphertext.

To achieve this, the application developer has to identify
and rewrite vulnerable code sections. For example, in our
collision attack (Section V-B), the conditional swap operation
should not be written to be performed in-place, but should
store the result in a newly allocated memory area. In this
way, an attacker always observes a fresh ciphertext in a new
location, independent from the value of the decision byte ci.

10346

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

Software-based probabilistic encryption. If the aforemen-
tioned methods are not applicable, one can mimic probabilistic
encryption in software and add a random nonce to the secret
data each time when the data is written to the memory.

This can be approached in two ways: First, one can modify
the memory layout of the affected data structures to include
random nonces in between, such that each memory block gets
a sufficient amount of random bits. Second, the memory layout
is left as-is, but a second buffer of the same size is allocated
for storing masks, which are then XOR-ed onto the plaintext.

The first approach can be implemented by reserving the high
8 bytes of each 16-byte encryption block for a random nonce,
while the low 8 bytes are used for payload. When storing
a value in this block, the nonce is incremented to ensure
that the ciphertext changes. In addition, the old plaintext
must be overwritten with a random value before storing the
new plaintext, to keep the attacker from detecting consecutive
writes of the same value. In the second approach, the nonces
and the data are stored in separate locations, and the nonces
are XOR-ed onto the data as a mask. On each memory write,
the corresponding location in the mask buffer is resolved, the
mask value is updated and then XOR-ed to the new plaintext.
Finally, the masked plaintext is written to the desired memory
address. As the nonces are high entropy values and updated
independently of the written data, they are not susceptible
to the dictionary attack or collision attack. Due to its high
locality, the first approach is better suited for small variables
(e.g., variables on the stack), while the second approach has
better support for pointer arithmetic and should thus be used
for buffers and complex data structures. Both countermeasures
could be implemented as a compiler extension, that automat-
ically applies them to variables marked as secret.

C. Software-based Countermeasures: Kernel Context Switch

While the generic software-based countermeasures are suf-
ficient to protect applications in user mode, they make the
critical assumption that registers are immune to ciphertext side
channels. However, our attack in Section IV shows that the
attacker can inspect the ciphertext in the kernel’s pt_regs
structure to infer register values. To mitigate the ciphertext
leakage on register-level, we developed a kernel patch that
protects registers during context switches. We focus on the
Linux kernel, but similar methods can also be applied to other
operating systems.

Specifically, the kernel patch protects the pt_regs struc-
ture, which stores x86-64 user space registers as described
in Section II-D. We present two methods for securing this
structure. One is to insert a random nonce alongside each
register. The other is to randomize the stack location on each
context switch.

Storing a nonce alongside registers. A random 64 bits
nonce can be stored next to each register (64-bit) to add
enough randomization. In this way, on a context switch, the
kernel doesn’t simply push all registers to the stack, but
interleaves them with pushes of a random value, which is
incremented on every context switch. This method gives us

64 bits of security, which makes it impossible for the attacker
to infer the plaintext even for long running VMs. However,
this strategy comes with a major caveat: It requires significant
changes to existing highly-optimized code paths, as a lot of
exception/signal handling functions rely on the exact offset of
the registers in pt_regs and would thus may not be adapted
by the upstream kernel committee.

Context switch stack randomization. As an alternative strat-
egy, we adapt the memory address randomization idea to the
kernel entry point stack. Instead of inserting nonces between
the saved registers, we randomize the address of the stack
where the exception/interrupt handlers store the register values
of the interrupted user space application.

This method is much less intrusive than the nonce approach
and easy to hide behind a feature flag, as we only need to keep
track of stack pages and replace the stack pointer on each exit
from kernel space to user space. However, it also comes with
a high memory overhead, as we have to reserve a lot physical
memory only for the kernel entry point stacks. Also, at some
point we will run out of physical memory, giving us a hard
limit on the reachable entropy.

For example, if we assume that we have 8 GB of physical
memory which can be freely used for our stack countermea-
sure, with a stack size of 4 KB (one page) we get 221 possible
stack locations (21 bits of entropy). This is significantly less
than the 64 bits obtained with the nonce approach, but still
considerably reduces the attack bandwidth, as the attacker
would have to wait until a stack page repeats. To assess the
practicality and the resulting overhead, we implemented the
stack randomization countermeasure in the Linux kernel.

D. Case Study: Randomizing pt regs Location

For our case study, we focused on the common ex-
ception and interrupt path described by idtentry_body
which is defined in arch/x86/entry/entry_64.S. The
idtentry_body path is e.g. used for the high frequency
page fault exception as well as for the local APIC timer
interrupt. The latter is especially interesting, as it is the main
driver in determining if a task has used up its time slice,
leading to a reschedule to a different task. While interrupts
and exceptions can also occur when the CPU is already in
kernel mode, we restrict our countermeasure to events that
interrupt a user space application, as they contain the register
values that we want to protect.

Since the thread stack is empty upon entering the kernel
from user space, we can simply replace it with a newly
allocated stack. For the entry stack, randomizing the stack
upon entry to the kernel is more difficult, as all general purpose
registers hold user data and thus cannot be used to perform
the change. To circumvent this, we randomize the stack on the
exit path before returning back to user space. Thus upon the
next entry, we have a fresh entry stack.

Using the regular memory allocation mechanisms of the
Linux kernel for the stack allocation proves difficult, as they
were not build with guarantees regarding not returning a
recently freed page upon a new allocation. In addition, they

11347

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

share a common memory pool with the rest of the system,
which increases the collision probability under high memory
load, if taking random pages from the pool. Instead we allocate
a large chunk of memory at boot time and manage the stacks in
a first-in-first-out queue, maximizing the time between reuses.

To evaluate the performance of our prototype implemen-
tation, we call the cpuid instruction 10 million times in a
tight loop from a user space application. Under SEV, this is
an emulated instruction that will directly trigger the modified
code paths in idtentry_body without doing further ex-
pensive computations, allowing us to efficiently measure the
performance impact of the modifications to the context switch.
Using this strategy, we measured a total average overhead of
1063 nanoseconds per context switch with standard derivation
4.93. We also ran a modified benchmark, where the application
also loops over a large memory buffer each iteration, to mea-
sure the additional cache pressure created by randomizing the
kernel stack. We ran the experiment 1000000 times resulting
in a total average overhead of 2232 nanoseconds with standard
derivation 297.

VII. DISCUSSION

Secure encryption of large memory. Memory encryption is a
basic building block used in TEEs to establish the confidential-
ity of data that leaves the CPU. Ideally, a probabilistic authenti-
cated encryption scheme needs to be used, as was implemented
for the first generation of Intel SGX [16]. However, managing
and updating authentication tags and counter values consumes
additional storage, costs latency and decreases the memory
bandwidth for payload data. Thus, we do not believe that
integrity trees can scale to protect large amounts of memory,
as it is required for the confidential VM usage model.

To cope with these conflicting properties, many confidential
VM designs use a mixture of cryptography and additional,
architectural permission checks to achieve their security guar-
antees. Since random memory access latency is a critical
performance property for the entire system, ECB would be the
best candidate from a performance point of view. However, the
independent encryption of all memory blocks with the same
key leaks repetition patterns, as there is only one ciphertext for
each plaintext. Thus, current confidential VM designs (AMD
SEV [22]), but also designs to be commercially available in
the near feature (Intel TDX [19] and ARM CCA [7], [8]) all
adopt a tweaked block cipher, like AES XTS/XEX. Table II
shows a more comprehensive overview. These modes offer
a middle ground between performance and security, as the
tweak mechanism offers a cheap way to ensure that the same
plaintext encrypts to different ciphertexts when stored in two
different addresses. However, for a given memory block, there
is still only one ciphertext for each plaintext. As we have seen
throughout this paper, this is the root cause of the ciphertext
side channels.

To prevent attacks on the missing integrity protection,
systems like SEV-SNP or Intel TDX and Intel SGX prevent
untrusted parties from writing to protected memory [4], [13].

Intel TDX and SGX also prevent read accesses to the cipher-
text [13], [19]. However, as discussed in Section II-C, these
checks do not prevent physical attacks like bus snooping.

Finally, the implementation of access right checks also
comes with technical hurdles. On the one hand, they need
to be fast, as they influence the memory access latency. On
the other hand, static approaches that simply block access to
a fixed range, like in Intel SGX, hinder efficient memory use
and scaling. These hurdles remain open research questions to
be answered in the future works.

Side-channel resistant cryptosystems. With decades of stud-
ies on micro-architectural side channels, including cache or
TLB side channels, building side-channel resistant crypto-
graphic implementations has become a common practice. Most
practically used cryptographic libraries adopt some levels of
side-channel defenses, to prevent exploitation from a remote
attacker [1] or another user on shared machines [38], [39].
The known best practice for defeating side channels is data-
oblivious constant-time implementation, which dictates the
execution time of the cryptographic operations (or an arbitrary
portion of it) is constant regardless of the secret values used in
the computation and that branch decisions or memory accesses
may not depend on secret values. Data oblivious Constant-time
implementation has been shown to defeat all known micro-
architectural side-channel attacks, except the ciphertext side-
channel attacks discussed in this work.

The ciphertext side channel opens up a new way of exploit-
ing cryptographic code, which the data oblivious constant-time
implementation is no longer sufficient to guard against. Given
the difficulties of securing accesses to the ciphertext through
memory access or bus snooping (Section II-C), we envision
cryptographic code to be used in TEEs with large memory
needs to adopt a new paradigm that achieves indistinguisha-
bility not only on execution time and access patterns, but on
the ciphertext values. We hope our work will inspire a new
research direction on secure implementation of cryptography,
such as tools to automate the discovery of such vulnerabilities,
compilers to transform a vulnerable code to a secure one, or
formal provers to assert the absence of such vulnerabilities.

VIII. RELATED WORK

To protect SEV-protected VMs against an untrusted cloud
service provider, SEV adopts some additional designs atop
traditional Virtualization. Some of those adjustments are chal-
lenged, including AES memory encryption, the I/O bounce
buffer and ASID-based key management. Meanwhile, some
designs inherited from AMD’s traditional hardware-based vir-
tualization are also proven to be insecure under the assumption
of the untrusted host, including the VM control block, Nested
Page Tables, and ASID-tagged TLB entries. Besides the Ci-
phertext leakage caused by VMSA, this section summarizes
other attacks against SEV.

Intercept plaintext in VMCB (SEV). The original SEV
allows the adversary to intercept and manipulate register values
inside the unencrypted VMCB. Several existing works exploit

12348

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

Table II: Comparison of hardware memory encryption-based TEEs. Drop-In replacement means that applications do not need
to be adjusted to work with the TEE. * denotes the release time of the whitepapers while the commercial machine is not
available yet. † to our understanding only a recommendation for a possible instantiation.

Project Vendor Release TCB type TCB size Drop-In
replacement Encryption mode Block size

SEV [22] AMD 2016 VM No Limit X XE or XEX 128-bit
SEV-ES [21] AMD 2017 VM No Limit X XE or XEX 128-bit
SEV-SNP [4] AMD 2020 VM No Limit X XEX 128-bit

SGX [13] Intel 2015 Enclave 256 MB [18] 7 AES-CTR + integrity + freshness 128-bit
SGX on Ice Lake SP [20] Intel 2021 Enclave up to 1 TB 7 ? ?

TDX [19] Intel *2020 VM No limit X XTS 128-bit
CCA [7] ARM *2021 VM No limit X AES XTS or QARMA† 128-bit†

the unencrypted VMCB vulnerability. Hetzelt et al. showed
that the attacker could control the VM’s execution and perform
ROP attacks [17]. Werner et al. showed that the attacker
can infer VM’s instructions, fingerprint applications, and steal
secret data [34]. From SEV-ES, registers are encrypted and
stored in VMSA. For SEV-ES, an additional integrity check is
performed on every VMRUN. For SEV-SNP, the RMP table
restricts software’s write access towards the VMSA area.

Manipulate Nested Page Table (SEV-ES). By changing
the mapping between the guest physical address and the
system physical address in the nested page table, the attacker
can disturb the VM’s execution and turn the VM’s benign
activities into malicious activities. In the SEVered attack [30],
Morbitzer et al. showed that programs with a network interface
(e.g., web server) could be used to decrypt the VM’s memory.
Specifically, the attacker sends some file query requests to
the webserver inside a SEV-enabled VM and then remaps
the guest physical address belonging to those data files to
some host physical addresses of private data. The private data
will then be sent back to the attacker. The latest SEV-SNP
mitigates this vulnerability by prohibiting the hypervisor from
unauthorized NPT remapping.

Note that the hypervisor-controlled nested page table also
results in a page-level controlled channel. The page fault
controlled channel is widely used in numerous attacks against
AMD SEV ([24], [26], [34], [35], etc.), and is used to infer
the VM’s activities and step its execution. SEV-SNP also
suffers from this controlled channel. According to SEV-SNP’s
whitepaper [4], the page-level controlled channel is not in the
scope of SEV-SNP’s designed features.

Modify encrypted memory (SEV-ES). Before SEV-SNP, the
hypervisor had write access to the VM’s memory, which led
to some delicate attacks ([10], [14], [35], etc.) that broke the
integrity of SEV-enabled VMs by carefully overwriting their
encrypted memory. Wilke et al. [35] improved the analysis of
the encryption modes on Zen 1 Embedded CPUs, discovering
the updated XEX encryption mode and extending the reverse
engineering of the tweak function. Using the tweak values in
combination with a known plaintext-ciphertext dictionary, they
built malicious code gadgets by copying ciphertext blocks in
memory. Based on that, they bootstraped an encryption oracle.
From Zen 2 onwards these attacks are no longer possible due
to an improved tweak function.

Tamper with the I/O bounce buffer (SEV-ES). Because of
the encrypted memory, DMA is not directly supported in SEV.
A shared bounce buffer (SWIOTLB) is then introduced for I/O
traffic. For incoming I/O traffic, the guest VM copies the data
from the bounce buffer to its private memory. For outgoing
I/O traffic, the guest VM copies the data from the private
memory to the bounce buffer. The memory copy activities give
the attacker a chance to construct encryption and decryption
oracles. Li et al. [25] showed that the attacker could overwrite
I/O traffic to encrypt/decrypt the VM’s memory stealthily.
SEV-SNP or processors with XEX mode memory encryption
can mitigate this attack.

ASID-based momentary execution (SEV-ES). In SEV, in-
cluding SEV-ES and SEV-SNP, the Address Space Identify
(ASID) is managed by the untrusted hypervisor. While ASIDs
play some rather important roles in SEV-enabled VMs, in-
cluding cache tagging, TLB tagging, and identifying the VM
encryption keys, the hypervisor has the ability to modify
a VM’s ASID during the VM’s lifecycle. SEV relies on a
“Security-by-Crash” principle that an improper ASID always
causes a meaningless VM crash, assuming good behavior of
the hypervisor. Li et al. [24] exploited this improper principle
and introduced the CROSSLINE attacks. The authors showed
that the attacker could extract the victim VM’s encrypted
memory blocks by setting an adversary-controlled attacker VM
and changing the attacker VM’s ASID to the victim VM’s
ASID. Because of the lack of ASID checks, the hardware
always tried to execute the VM directly, which enabled mo-
mentary execution and a time window for leaking secrets. Even
though SEV-SNP still gives the hypervisor the permission of
ASID management, the additional ownership check mitigates
the CROSSLINE attacks by restricting read access from the
attacker VM to the victim VM.

ASID-tagged TLB (SEV-ES). Li et al. studied the hypervisor
controlled TLB flush problem in SEV and SEV-ES [27]
and presented TLB poisoning attacks. A TLB control field
inside the VMCB controls the TLB flush during VMRUN.
The authors exploited the fact that the hypervisor can skip
TLB flushes by intentionally clearing the TLB control field.
By doing so, the attacker could breach the TLB isolation
between vCPUs from the same VM. The authors showed that
an SSH connection controlled by the attacker could reuse
other SSH connections’ TLB entries and bypassed the login
authentication. SEV-SNP adds a hardware-controlled TLB

13349

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

flush mechanism to mitigate this vulnerability.

Permutation agnostic attestation (SEV-ES). Wilke et al. [36]
exploited that the attestation mechanism of SEV and SEV-ES
was not able to detect permutations of the attested data in
memory on a 16-byte granularity. They further showed how an
attacker can use the ability to reorder code blocks to construct
malicious code gadgets allowing to encrypt/decrypt arbitrary
data. This attack is mitigated with SEV-SNP.

Voltage glitching attack (SEV-SNP). Buhren et al. studied a
fault injection attack against AMD-SP, named voltage glitch-
ing attack [11]. Different from other works in this section,
voltage glitching attack needs additional equipment (including
a µController and a flash programmer) and real-physical
access to SEV’s machine. By inducing errors in AMD-SP’s
bootloader and implanting a malicious SEV firmware, voltage
glitching attack are shown to be able to extract secrets used
in SEV’s remote attestation.

IX. CONCLUSION

In this paper, we have performed a comprehensive study
on the ciphertext side channels. Our work extends ciphertext
side-channel attack to exploit the ciphertext leakage from all
memory pages, including those for kernel data structures,
stacks and heaps. We have also proposed a set of software
countermeasures, including patches to the OS kernel and
cryptographic libraries, as a workaround to the identified
ciphertext leakage.

As a general design lesson, deterministic encryption modes
like XEX must be combined with both read and write pro-
tection to prevent software-based attacks. To also prevent
physical memory attacks, freshness and integrity protection
are required.

REFERENCES

[1] N. J. Al Fardan and K. G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In 2013 IEEE Symposium on Security and
Privacy, pages 526–540. IEEE, 2013.

[2] AMD. Open-Source Register Reference For AMD Family 17h Proces-
sors Models 00h-2Fh. Manual, July 2018. Rev 3.03.

[3] AMD. AMD64 architecture programmer’s manual volume 2: System
programming. Manual, 2019.

[4] AMD. AMD SEV-SNP: Strengthening VM isolation with integrity
protection and more. White paper, 2020.

[5] AMD. AMDSEV/SEV-ES branch. https://github.com/AMDESE/
AMDSEV/tree/sev-es, 2020.

[6] AMD. AMD Secure Encryption Virtualization (SEV) Information
Disclosure (Bulletin ID: AMD-SB-1013). https://www.amd.com/en/
corporate/product-security/bulletin/amd-sb-1013, 2021.

[7] ARM. Arm CCA Security Model, August 2021. Rev 1.0, Document
Number DEN0096.

[8] ARM. Arm Confidential Compute Architecture software stack. https:
//developer.arm.com/documentation/den0127/latest, 2021.

[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang. High-
speed high-security signatures. In B. Preneel and T. Takagi, editors,
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, volume 6917 of Lecture Notes in Computer Science, pages
124–142. Springer, 2011.

[10] R. Buhren, S. Gueron, J. Nordholz, J. Seifert, and J. Vetter. Fault
attacks on encrypted general purpose compute platforms. In G. Ahn,
A. Pretschner, and G. Ghinita, editors, Proceedings of the Seventh ACM
Conference on Data and Application Security and Privacy, CODASPY
2017, Scottsdale, AZ, USA, March 22-24, 2017, pages 197–204. ACM,
2017.

[11] R. Buhren, H. N. Jacob, T. Krachenfels, and J. Seifert. One glitch to
rule them all: Fault injection attacks against amd’s secure encrypted
virtualization. In Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021,
pages 2875–2889. ACM, 2021.

[12] J. V. Bulck, F. Piessens, and R. Strackx. Sgx-step: A practical attack
framework for precise enclave execution control. In Proceedings of
the 2nd Workshop on System Software for Trusted Execution, Sys-
TEX@SOSP 2017, Shanghai, China, October 28, 2017, pages 4:1–4:6.
ACM, 2017.

[13] V. Costan and S. Devadas. Intel SGX explained. IACR Cryptol. ePrint
Arch., page 86, 2016.

[14] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang. Secure
encrypted virtualization is unsecure. arXiv preprint arXiv:1712.05090,
2017.

[15] Google. Introducing google cloud confidential computing with confi-
dential VMs. https://cloud.google.com/blog/products/identity-security/
introducing-google-cloud-confidential-computing-with-confidential-vms,
2020.

[16] S. Gueron. A memory encryption engine suitable for general purpose
processors. IACR Cryptol. ePrint Arch., page 204, 2016.

[17] F. Hetzelt and R. Buhren. Security analysis of encrypted virtual
machines. In Proceedings of the 13th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE 2017, Xi’an,
China, April 8-9, 2017, pages 129–142. ACM, 2017.

[18] Intel. 10th Generation Intel Core Processor Families.
https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf, July
2020.

[19] Intel. Intel Trust Domain Extensions. Whitepaper, 2020.
[20] Intel. Product brief, 3rd gen intel xeon scaleable processor for

iot. https://www.intel.com/content/www/us/en/products/docs/processors/
embedded/3rd-gen-xeon-scalable-iot-product-brief.html, 2021.

[21] D. Kaplan. Protecting VM register state with SEV-ES. White paper,
2017.

[22] D. Kaplan, J. Powell, and T. Woller. AMD memory encryption. White
paper, 2016.

[23] D. Lee, D. Jung, I. T. Fang, C. Tsai, and R. A. Popa. An off-chip
attack on hardware enclaves via the memory bus. In S. Capkun and
F. Roesner, editors, 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, pages 487–504. USENIX Association, 2020.

[24] M. Li, Y. Zhang, and Z. Lin. CROSSLINE: Breaking “Security-by-
Crash” based Memory Isolation in AMD SEV. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2937–2950, 2021.

[25] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected I/O
operations in amd’s secure encrypted virtualization. In N. Heninger and
P. Traynor, editors, 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1257–1272.
USENIX Association, 2019.

[26] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng. CIPHERLEAKS:
breaking constant-time cryptography on AMD SEV via the ciphertext
side channel. In M. Bailey and R. Greenstadt, editors, 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, pages
717–732. USENIX Association, 2021.

[27] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng. TLB Poisoning Attacks
on AMD Secure Encrypted Virtualization. In Annual Computer Security
Applications Conference, 2021.

[28] Microsoft. Azure and AMD announce landmark in confiden-
tial computing evolution. https://azure.microsoft.com/en-us/blog/
azure-and-amd-enable-lift-and-shift-\\confidential-computing/, 2021.

[29] M. Morbitzer, M. Huber, and J. Horsch. Extracting secrets from en-
crypted virtual machines. In G. Ahn, B. M. Thuraisingham, M. Kantar-
cioglu, and R. Krishnan, editors, Proceedings of the Ninth ACM Confer-
ence on Data and Application Security and Privacy, CODASPY 2019,
Richardson, TX, USA, March 25-27, 2019, pages 221–230. ACM, 2019.

14350

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

[30] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. Severed: Subverting
amd’s virtual machine encryption. In A. Stavrou and K. Rieck, editors,
Proceedings of the 11th European Workshop on Systems Security,
EuroSec@EuroSys 2018, Porto, Portugal, April 23, 2018, pages 1:1–
1:6. ACM, 2018.

[31] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. DRAMA:
exploiting DRAM addressing for cross-cpu attacks. In T. Holz and
S. Savage, editors, 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016, pages 565–581. USENIX
Association, 2016.

[32] P. Simmons. Security through amnesia: a software-based solution to
the cold boot attack on disk encryption. In R. H. Zakon, J. P. Mc-
Dermott, and M. E. Locasto, editors, Twenty-Seventh Annual Computer
Security Applications Conference, ACSAC 2011, Orlando, FL, USA, 5-9
December 2011, pages 73–82. ACM, 2011.

[33] S. Swami and K. Mohanram. COVERT: counter overflow reduction
for efficient encryption of non-volatlle memories. In D. Atienza and
G. D. Natale, editors, Design, Automation & Test in Europe Conference
& Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017,
pages 906–909. IEEE, 2017.

[34] J. Werner, J. Mason, M. Antonakakis, M. Polychronakis, and F. Mon-
rose. The severest of them all: Inference attacks against secure virtual
enclaves. In S. D. Galbraith, G. Russello, W. Susilo, D. Gollmann,
E. Kirda, and Z. Liang, editors, Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, AsiaCCS 2019,
Auckland, New Zealand, July 09-12, 2019, pages 73–85. ACM, 2019.

[35] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth. Sevurity: No
security without integrity : Breaking integrity-free memory encryption
with minimal assumptions. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages
1483–1496. IEEE, 2020.

[36] L. Wilke, J. Wichelmann, F. Sieck, and T. Eisenbarth. undeserved trust:
Exploiting permutation-agnostic remote attestation. In IEEE Security
and Privacy Workshops, SP Workshops 2021, San Francisco, CA, USA,
May 27, 2021, pages 456–466. IEEE, 2021.

[37] M. H. Yun and L. Zhong. Ginseng: Keeping secrets in registers when you
distrust the operating system. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[38] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side
channels and their use to extract private keys. In Proceedings of the
2012 ACM conference on Computer and communications security, pages
305–316, 2012.

[39] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-tenant side-
channel attacks in paas clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 990–
1003, 2014.

15351

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 17:42:12 UTC from IEEE Xplore. Restrictions apply.

