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Abstract—Constant-time programming is a principal line of
defense against timing side-channel attacks. It involves hardening
software in such a manner that execution time is uncorrelated
to sensitive data values, and is now broadly employed in
most cryptography and other security critical kernels. However,
constant-time programming relies on necessary assumptions
about the underlying microarchitectural implementation, which
are frequently incorrect or incomplete, leading to exploits.
Consequently, devising methodologies for joint leakage detection
in high assurance applications, compiler optimizations and
microarchitectural implementations is an increasingly important
problem. This paper presents MICROSAMPLER, a dynamic leakage
detection framework to identify secret-dependent microarchitec-
tural behavior that can lead to side-channel leakage in security
critical software. MICROSAMPLER runs the constant-time code
to be verified on a cycle-accurate register-transfer level (RTL)
simulation of the target system and builds a comprehensive and
detailed representation of microarchitectural state captured at
cycle granularity. MICROSAMPLER then uses statistical analysis to
measure any existing association between microarchitectural state
and data values that are identified as sensitive (e.g. encryption
keys). We demonstrate the utility of the proposed leakage
detection framework through multiple case studies. We show
MICROSAMPLER is able to reveal vulnerabilities in constant-
time encryption code in diverse cases where the vulnerabilities
originate in the algorithm design, compiler optimizations or
microarchitectural implementation.

I. INTRODUCTION

Over the past decade architecture security has received
increased scrutiny. This can be largely attributed to advances in
offensive security, which has demonstrated practical, software-
controlled microarchitectural attacks that use measurable
processor characteristics to infer data values from execution
activity. Recent exploit disclosures [1], [7], [9], [11]–[14],
[24], [30], [32]–[34], [44], [50]–[53], [57], [65], [66] continue
to demonstrate the many ways in which confidentiality and
integrity guarantees granted by language, software and system-
level security measures can be breached using this class of
attacks.

Fundamental to microarchitectural attacks is data-dependent
execution, which can reveal privileged information through
a multitude of side channels. This is especially problematic
for security critical applications, which handle sensitive data
and may employ software-level hardening like constant-time
programming in order to thwart data leakage. These strategies

rely on necessary assumptions about the underlying microar-
chitectural implementation, which are frequently incorrect
or incomplete, leading to exploits. In general, violations
of data-independent execution assumptions can originate at
most levels of the computing stack, including algorithm,
programming language, compiler or microarchitecture. It is
therefore important to also develop principled, practical and
scalable solutions for cross-stack leakage detection.

Prior work on leakage detection of constant-time execution
generally falls under two main categories: (1) approaches
that test the algorithm/software implementation against a set
of principles believed to ensure data-oblivious execution [2],
[55], and (2) approaches that verify constant-time or data-
independent execution of critical hardware components [18],
[19], [22], [28]. We make the case that these approaches, while
very useful, are insufficient for practical leakage detection in
security sensitive applications running on modern, complex
microarchitectures. Tools like DATA [2], [55] cannot capture
leakage that originates in the microarchitectural implementation
unless it directly manifests as timing leakage at testing time.
On the other hand, formal verification approaches aimed at
ensuring constant-time execution of certain hardware functional
units, do not generally scale to large complex microprocessors.

This work seeks to bridge the gap between software and
hardware leakage detection. It presents MICROSAMPLER1,
a dynamic leakage detection framework for automatically
identifying microarchitectural state that exhibits correlations
with secret data and therefore has the potential to violate
constant-time assumptions of security critical software. MI-
CROSAMPLER runs the constant-time code under test on a
cycle-accurate RTL simulation of the target system and builds a
comprehensive and detailed representation of microarchitectural
state captured at cycle granularity. Microarchitectural state
traces are captured across multiple executions of security
critical regions (SCR) within an application, and labeled
according to the sensitive data values they process (e.g.
encryption keys). MICROSAMPLER then uses statistical analysis
to measure any association between microarchitectural states
and data values that are identified as sensitive. These cases are
then automatically flagged for further analysis.

1Available at https://github.com/MoeinGhaniyoun/MicroSampler

https://github.com/MoeinGhaniyoun/MicroSampler


It is important to note that not all data-dependent execution
necessarily leads to the availability of a timing channel.
However, an association between an execution feature, such as
data or addresses in microarchitectural buffers, functional unit
activity, etc. indicate the potential for creating a timing channel.
Importantly, the full visibility into the microarchitectural
state at cycle granularity allows MICROSAMPLER to identify
potential for leakage without it manifesting directly as timing
leakage during verification. This ability sets MICROSAMPLER
apart from software-level approaches such as [2], [55]. We
also highlight that, even though MICROSAMPLER performs
the analysis at microarchitectural level, the data-dependent
execution it identifies can originate at higher levels of the
stack, including compiler optimizations, implementation bugs
or algorithmic vulnerabilities. If secret dependent execution is
present, it will manifest in correlations between the cycle-level
microarchitectural state and secret data values.

We demonstrate the utility of MICROSAMPLER through
several case studies that include a range of vulnerabilities
originating in different levels of the computing stack. We
focus on the domain of applied cryptography, analyzing several
crypto primitives. We utilize the open-source RISC-V BOOM
processor as our test bed. We find that MICROSAMPLER is
able to identify secret-dependent execution in cryptographic
primitives (including a previously unreported vulnerability),
leakage introduced by compiler optimizations, as well as
microarchitectural features and performance optimizations.

Overall this paper makes the following contributions:

• The first framework we are aware of that enables joint
verification of constant-time algorithms, compiler output
and microarchitectural implementation.

• Uses a principled statistical approach to identify potential
correlations between secret data and microarchitectural
state.

• Automatically and precisely flags the sources of correlation
at microarchitectural level, even if they do not directly
manifest as measurable side-channels.

• Unlike formal approaches, MICROSAMPLER runtime
scales linearly with the design size and number of
simulation cycles.

• MICROSAMPLER leverages RTL simulations to enable
full visibility and coverage of microarchitectural state.

• Makes the case that it is important to jointly test the
software and microarchitectural implementation in order
to produce trustworthy security critical systems.

The rest of this paper is organized as follows: Section II
provides background on constant time programming of secure
cryptographic algorithms. Section III discusses related work
on security verification. Section IV outlines the threat model.
Section V presents the MICROSAMPLER design. Section VI
details the experimental methodology. Section VII presents
the evaluation and a number of case studies highlighting
MICROSAMPLER capabilities. Section VIII concludes.

1 uint32 modexp(uint32 a, uint32 mod,
2 unsigned char exp[4]) {
3 int i,j;
4 uint32 r = 1;
5 for(i=3;i>=0;i--) {
6 for(j=7;j>=0;j--) {
7 r = ((uint64)r*r) % mod;
8 if(exp[i] & (1<<j))
9 r = ((uint64)a*r) % mod;

10 }
11 }
12 return r;
13 }

Listing 1: Exemplary Square-and-multiply implementation in C.

II. BACKGROUND

A. Modular Exponentiation

A core operation in many asymmetric ciphers (such as RSA
decryption) is modular exponentiation, often implemented with
the square-and-multiply algorithm. The square-and-multiply
algorithm is the most basic but surprisingly efficient method for
performing general exponentiation [35]. The idea is to scan the
binary representation of the exponent, starting from the most
significant bit and moving to the right. In each iteration, for
every exponent bit, the current result is squared. If the currently
scanned exponent bit has a value of ’1’, a multiplication by
the base x is also performed. The algorithm implementation
is shown in Listing 1. Unfortunately, this traditional imple-
mentation has a strong control-flow dependency on the secret
exponent and is highly susceptible to leakage.

The crux of the problem with such a verbatim implementa-
tion can be seen in Listing 1, where depending on the value
of the currently scanned exponent bit, a multiplication will be
performed or not (line 9). This translates to a clear discrepancy
in execution time during iterations, since iterations operating
with an exponent bit of value ’1’ will execute additional
high-latency instructions. A capable attacker can measure the
execution time of these iterations and easily infer the value of
the key bit being scanned in each, recovering the entire secret
key [60].

B. Constant-Time Programming

Constant-time programming, or data-oblivious programming,
is the practice of hardening software in such a manner that the
same operations are always, unconditionally performed. An
algorithm is constant-time where any variation in execution
time is uncorrelated with sensitive data.

There are three general principles for writing data-oblivious
code [6], [31]:

1) No control-flow depending on secret values
2) No memory accesses where the address depends on a

secret value
3) No secrets computed with variable-timing arithmetic
There have been several instances [8], [36], [61] in which a

gap between necessary assumptions regarding the underlying
hardware and it’s true implementation has lead to exploits.
Listing 2 shows the square-and-multiply algorithm written
to be constant-time. In this version, the squaring and the



1 uint32 modexp(uint32 a, uint32 mod,
2 unsigned char exp[4]) {
3 int i,j;
4 uint32 r = 1,t;
5 for(i=3;i>=0;i--) {
6 for(j=7;j>=0;j--) {
7 r = ((uint64)r*r) % mod;
8 t = ((uint64)a*r) % mod;
9 cmov(&r, &t, (exp[i] & (1<<j)) >> j);

10 }
11 }
12 return r;
13 }
14 void cmov(uint32 *r, uint32 *a, uint32 b)
15 {
16 uint32 t;
17 b = -b;
18 t = (*r ˆ *a) & b;
19 *r ˆ= t;
20 }

Listing 2: Constant-time square-and-multiply implementation in C
with conditional-copy operation.

multiplication are both always performed regardless of the
currently scanned exponent bit’s value. The two intermediate
results are stored in the variables t and r, respectively.

The crucial task remaining is to assign the correct inter-
mediate result for the next loop iteration without introducing
data-dependent behavior. In other words, it should be indis-
tinguishable whether the intermediate result t is selected as
the final result for a given iteration. This is achieved by the
use of a conditional copy operation, where t will be copied
into the accumulative result variable r only if the currently
scanned bit indeed has a value of ’1’. The conditional copy is a
branchless arithmetic assignment, using bit-wise combinations
to mathematically select the correct result. Importantly, the
same arithmetic instructions are executed regardless of which
value is ultimately assigned. The arithmetic assignment can be
described by the equation:

r = cT + (1− c)R (1)

where c is the control bit used in determining the copy and in
this case will be the secret exponent bit.

III. RELATED WORK

Prior work has developed several approaches for detecting
leakage at both software and hardware levels. We classify these
based on whether they are deployed at system design time
(pre-silicon) or after manufacturing (post-silicon).

A. Pre-Silicon Verification

1) Information-flow Tracking: Information-flow tracking
mechanisms for hardware designs seek to capture the routes
of sensitive data, through architectural [47] or gate-level
structures. SecVerilog [64] proposes a type system extension
to the Verilog HDL, where information flow policies for a
design can be specified and checked statically at compile-
time. GLIFT [48] and CellIFT [46] propose gate-level and
macrocell-level instrumentation to enforce these flows at run-
time. These approaches are effective at identifying a broad
range of information leakage scenarios. However, they generally
require the redesign of the target processors to support IFT,

which may not be practical for all applications due to increased
complexity.

2) Dynamic Verification: IntroSpectre [21] leverages tar-
geted fuzzing and RTL simulation trace analysis to discover
transient execution attacks. SpecDoctor [25] proposes a multi-
phased RTL fuzzer to identify transient execution vulnerabilities
through differential testing. WhisperFuzz [10] models microar-
chitectural events as a directed graph and leverages white-box
fuzzing to identify data-dependent timing behavior which is
triggered in case two programs with same instructions and
different data yield different graph traversal paths. Cascade
[45] proposes a pre-silicon CPU fuzzer that separately generates
data-flow and control-flow instruction streams which are
entangled to create long, complex test sequences. TEESec [20]
jointly verifies the trusted execution environments and the un-
derlying microarchitecture via enumerating microarchitectural
access paths where the TEE data/metadata could travel. These
approaches do not address leakage detection in constant-time
code. Although IntroSpectre [21] and SpecDoctor [25] leverage
RTL simulation traces similar to MICROSAMPLER, their aim
is to identify explicit leakage of data (i.e., verbatim secret
found in microarchitectural buffers) whereas MICROSAMPLER
applies statistical analysis methods to capture any correlation
between microarchitectural states/execution and the program
secret values.

3) Formal Techniques: Deutschmann et al. [19] formally
verify data-oblivious behavior on small in-order cores (e.g.
CVA6 [63]) for different types of instructions. The interaction
between instructions is not verified. IODINE [22] and XENON
[28] use a similar formal approach and are evaluated on
small designs (primarily ALUs and FPUs). They also require
annotations of the source code. Checkmate [49] utilizes high-
level, formal models of the microarchitecture, called happens-
before graphs. Checkmate requires a specification of all legal
event orderings (uarch events) for each component of this
graph to be comprehensive, employing relational model finding
to locate violations of this specification with respect to all
possible orderings. Pensieve [59] proposes a microarchitectural
modeling framework that uses formal properties of speculative
non-interference and leverages bounded model checking to
automatically find speculative execution vulnerabilities in the
modeled designs. Chroniton [4] verifies constant-time execution
by performing a symbolic RTL simulation where the secrets
are marked as symbolic variables. While symbolic execution
provides strong coverage, it is inherently slow.

B. Post-Silicon Verification

1) Dynamic Verification: DATA [55] collects traces of
addresses (instruction and data accesses) referenced during
program execution. DATA then looks for variations in addresses
across traces with different inputs (keys) through standard
statistical testing as a means of leakage detection. MicroWalk
[56] uses mutual information between sensitive inputs and
program state to detect side-channels. CaType [27] uses a
refinement type system to track tainted program variables in bit-
level representations. Tainted values are then checked to infer



Tool Target Approach Identifies data-dependent execution in: Scalability
(Design/-
Code size,
state bits,
etc.)

Formal
ProofAlgorithm-

Compiler
(Control

Flow/Mem
Accesses)

HW Arith-
metic
Units

Simple
Processor
Microar-

chitecture

Complex
Processor
Microar-

chitecture

DATA [55] SW
Statistical analysis on
memory and control
flow address traces

✓ ✗ ✗ ✗
Linear

Scalability
(10K LOC)

✗

Almeida et
al. [2]

SW: Constant-time
primitives of OpenSSL

Formal Analysis:
Reduction-based ✓ ✗ ✗ ✗ 2K LOC ✓

IODINE &
XENON [22],
[28]

HW: Functional
units (ALU, FPU),
crypto cores, and very
simple processors e.g.,
ScarvRISCV

Formal Analysis:
Solver-aided modular
verification

✗ ✓ ✓ ✗
2.5K state

bits ✓

Deutschmann
et al. [18],
[19]

HW: FUs, crypto cores,
simple CPUs, OoO pro-
cessors with abstraction

Formal Analysis: Two-
safety property check-
ing

✗ ✓ ✓ ✗* 47K state
bits* ✓

MicroSampler
Full System: Hardware,
Software (down to as-
sembly)

Statistical analysis
on microarchitectural
traces

✓ ✓ ✓ ✓

Linear
Scalablity

(700K state
bits)

✗

TABLE I: Comparison of leakage detection and verification tools with a focus on constant-time execution. Target indicates the level at
which the analysis is performed. *These works reduce the number of state bits by black-boxing processor components (e.g., ROB). The
reported size is the black-boxed version which does not include the entire processor implementation.

any secret dependent branch or memory access. CacheD [54]
combines trace recording with symbolic analysis, symbolically
executing instructions that could be influenced by the secret
key to find compromised data-dependent accesses. Abacus [5]
extends CacheD to include secret dependent control-flow while
also quantifying each leakage channel. SVF [17] proposes
a quantification metric to assess cache leakage, based on
correlations between architecturally-simulated observations and
a leakage model.

Post-silicon approaches do not have direct access to microar-
chitectural state and can therefore miss leakage that is not
directly triggered during testing.

2) Formal Techniques: Almeida et al. [2] verify constant-
time behavior by reducing the security of a program P to the
assertion-safety of a program Q, where P is constant-time (w.r.t.
the chosen leakage model) if and only if Q is assertion-safe.
Such approaches verify constant time properties under certain
assumptions about microarchitectural behavior that cannot be
guaranteed can turn out to be incorrect or incomplete.

C. Contributions Over Prior Work

The aforementioned approaches have made important con-
tributions, but also have some limitations. We summarize
some of the work aimed at identifying/verifying constant-
time that is closest to MICROSAMPLER in Table I. While
software binary instrumentation frameworks (i.e, DATA [55],
CaType [27], Abacus [5]) can scale to larger workloads, they
miss any data-dependent execution at microarchitecture-level
that is not architecturally exposed (e.g., transient execution,
data-dependent optimizations in arithmetic units). These tools
only consider secret dependent memory accesses and branches.
Formal methods [19], [22], on the other hand, cannot be
easily scaled to complex out-of-order (OOO) designs and are

mostly limited to verifying individual hardware units (e.g.,
arithmetic units, simple pipelines). Frameworks like IODINE
[22] or XENON [28] are evaluated on hardware blocks on the
order of 2.5K state bits. Some formal tools such as [18], [19]
developed methods of abstraction by “black-boxing” complex
microarchitectural components (e.g. ROB, cache) – replacing
their implementation with behavioral models – in order to
improve the scalability to larger designs (∼50K state bits). This
black-boxing can oversimplify the underlying microarchitecture
causing the tool to miss complex microarchitectural interactions,
such as speculative execution and data-memory dependent
prefetcher activities.

Unlike these prior works, MICROSAMPLER is uniquely
focused on cross-stack leakage detection in constant-time
execution. It scales linearly with both design size and number
of verification cycles. This allows MICROSAMPLER to be
deployed on the largest version of the RISC V BOOM (with
approximately 700K state bits) in reasonable time. Moreover,
MICROSAMPLER uses the actual hardware implementation
with no modeling assumptions, fits directly into traditional
hardware design workflows and requires no change to the
architecture in order to enable execution logging.

IV. THREAT MODEL

MICROSAMPLER is designed for pre-silicon security testing
and assumes the verification tool has access to the RTL
implementation of the target processor and the source code of
the application to be verified. It is intended for analysis of high
assurance applications such as constant time primitives where
security critical code and data can be easily identified, and
desired security properties can be enumerated. Many full-stack
vendors like NVIDIA, Apple, Intel, etc. develop their own
crypto libraries for both performance and security reasons.
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Fig. 1: High-level analysis flow of MICROSAMPLER while verifying microarchitectural state samples from the classic Square-and-Multiply
algorithm in Listing 1.

MICROSAMPLER provides the ability to test these crypto
libraries on their own hardware and help them identify hard
to catch potential vulnerabilities. MICROSAMPLER pinpoints
microarchitectural behavior that exhibits statistically significant
correlations with secret values.

MICROSAMPLER seeks to identify all cases of secret-
dependent microarchitectural state/execution, even if they do
not manifest directly as timing leakage. We do not make
assumptions about how this state could be leaked. An attacker
could induce leakage of such information through a side
channel, for example by co-locating with the victim or through
other means. We do not assume any special privilege with
regard to the attacker capabilities. Our threat model assumes
an attacker with the same capabilities as other side-channel
attacks such as Flush+Reload [60] or Prime+Probe [37].

V. MICROSAMPLER VERIFICATION FRAMEWORK

The goal of MICROSAMPLER is to identify processor activity
that is correlated with sensitive data values computed by
constant-time code. To explain our approach, let us consider
the square-and-multiply (SAM) Algorithm from Section II-A.
For the SAM algorithm, an implementation is considered free
of leakage if there exists no statistically significant correlation
between microarchitectural state and secret values. The intuition
is that if a state appears with high probability during iterations
when the secret exponent’s value is ‘1’ and low probability
when it is ‘0’ (or vice versa) it indicates an opportunity
for secret data leakage. At a high-level, MICROSAMPLER is
conducting a form of differential analysis for microarchitectural
state, accomplished in the following steps and further outlined
in Figure 1.

The verification process begins by generating detailed mi-
croarchitectural execution traces through RTL simulations of the
target processor, while running the code under verification 1 .
The state space is then partitioned according to relevant program
structure, to capture and tag the microarchitectural state with
the sensitive data values processed during execution 2 . Next,

statistical analysis is performed to identify correlations between
microarchitectural execution and sensitive data values 3 .
Finally, if correlation is identified, a feature extraction phase
isolates the microarchitectural features that are most responsible
for the identified correlation 4 . The results of this analysis can
be used to determine if side-channels can potentially exploit
the identified vulnerability.

A. RTL Simulation of Target Code

Step 1 of Figure 1 illustrates that MICROSAMPLER runs
the target application on an instrumented RTL simulator to
generate a detailed microarchitectural trace, which records the
execution state for each pertinent microarchitectural unit, at
cycle granularity. For efficiency, the log targets the region of
interest for the target application which includes the code that
is expected to exhibit constant time execution.

B. Trace Data Pre-Processing

The detailed execution log is processed by the MICROSAM-
PLER Parser to create microarchitectural iteration snapshots.
This is illustrated in Step 2 of Figure 1. Each snapshot
reflects the state of the microarchitecture during the execution
of an algorithmic “iteration”, for example the computation
corresponding to a single bit of an encryption key. The iteration
snapshots are represented as 2D matrices consisting of the
values (or state) of the microarchitectural unit in each cycle
of that iteration. Figure 2 shows an example of multiple such
state matrices for the Store Queue (SQ-ADDR), which tracks
the destination address of store instructions present in the Store
Queue during each iteration. The number of rows in each table
is equal to the number of simulation cycles for that specific
iteration. Each row represents the state of the Store Queue for
a single simulation cycle containing all the store addresses in
their original order, with empty/invalid entries replaced with
0s. The columns record the microarchitectural features being
tracked (e.g. destination addresses in the case of the Store
Queue).
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Fig. 2: Microarchitectural iteration snapshots for SQ-ADDR during
the processing of different key bits.

In order to facilitate the statistical analysis of the correlation
between state snapshots, we generate a unique hash for each
distinct microarchitectural state snapshot. A single hash is
generated to represent the microarchitectural state for each
code iteration that can be mapped to single secret data value
(e.g. the execution trace that processes a single key bit). The
hashing algorithm ensures that two identical state matrices will
generate the same hash, while two distinct matrices have very
low probability of producing the same hash (collision). The
hashes are 64-bit scalar values generated using Python’s default
SipHash algorithm.

C. Statistical Correlation Analysis

MICROSAMPLER seeks to measure any statistical association
between microarchitectural states and data values that are
identified as sensitive.

1) Contingency Tables: In order to perform the statistical
analysis, MICROSAMPLER automatically generates contingency
tables [40] for each functional unit block, using the frequency
of unique hashes representing microarchitectural iteration
snapshots corresponding to that block. A contingency table
is formed by the multivariate frequency distribution of the
variables. These tables are especially useful when exploring the
association, dependence, or independence between categorical
variables.

To build the contingency table for a microarchitecture unit,
we count the frequency of each hash value for each data class
(e.g. key bit). Table II shows a contingency table that is formed
with the hash-frequency information. Rows represent the output
classes (key bit 1 or 0) and columns represent the unique hash
values. Values inside the cells represent the count of each hash
value for a given class.

Contingency Table for SQ-ADDR

Classes
Hashes Hash-0 Hash-1 Hash-2 ... Hash-N

Key = 0 234 131 14 ... 43
Key = 1 256 115 10 ... 47

TABLE II: A sample contingency table where the number of rows
and columns represent the number of output classes and unique hashes,
respectively.

2) Quantifying Association Strength: To find the association
between nominal values in a contingency table, there exists a
few statistical tests that measure the significance of association.

We use Cramér’s V [16], which measures the association
between two nominal variables, producing a value between 0
and 1 (inclusive). It is based on Pearson’s chi-squared [38],
[39], [41] statistic test. Cramér’s V is computed as:

V =

√
χ2

N ·min(k − 1, r − 1)
(2)

where χ2 is chi-squared, N is the total number of observations,
k is the number of columns and r is the number of rows in
the contingency table.

Chi-squared (χ2) is used to test the independence of
categorical variables in a contingency table. It is calculated as:

χ2 =
∑ (O − E)2

E
(3)

where O represents the observed frequency and E represents
the expected frequency in a cell of the contingency table,
calculated under the assumption of independence.

Ei,j =

∑
Oi ·

∑
Oj

N
(4)

For each cell (i, j), E is calculated by multiplying the sum
of all observations in row i with the sum of all observations
in column j, divided by total number of observations N (sum
of all cells in the contingency table).

A high Cramér’s V value indicates strong correlation
between data classes and the microarchitectural state indicating
potential leakage for the corresponding functional block.
According to [15] correlation is strong for V > 0.5. To further
validate the statistical significance of the measured correlation,
we use Chi-squared’s p-value that measures the probability
of obtaining the same results if the null hypothesis was true.
Null hypothesis in MICROSAMPLER denotes the non-existence
of correlation between output classes and microarchitectural
snapshots. A p-value smaller than 0.05 indicates that the
measured associativity by Cramér’s V is statistically significant.

3) Identifying Correlation Root Causes: Once a functional
block is identified to have high correlation, the next step is to
help pinpoint which microarchitectural features in that block
are most responsible for the observed correlation. Pinpointing
the most relevant features (e.g. individual instructions, memory
addresses, functional unit activity, etc.) can help MICROSAM-
PLER users quickly identify the potential vulnerability in the
code, compiler optimization and/or microarchitecture.

High correlation manifests as some iteration snapshots (and
associated hashes) occurring for some classes and not others.
We use two main criteria to identify the microarchitectural
features that lead to this correlation. The first is feature
uniqueness, through which we identify microarchitectural
features (e.g. addresses, values, instructions, activity) that are
present predominantly in one class but not the other. In order to
extract feature uniqueness, MICROSAMPLER removes features
that are present in all classes, leaving only features unique to
each class. This helps pinpoint features such as instructions
executed, memory addresses accessed, etc. by only one class.



The second criteria we use for selection is feature ordering,
which captures event or feature orderings that are unique to
each class. For example if the same instructions are present
in all classes, but they are scheduled or executed in different
order consistently across classes they could help pinpoint the
source of the correlation. However, because they occur in all
classes, they would not be identified by feature uniqueness. A
chronological ordering of features is instead extracted from the
iteration snapshots and compared between classes. Ordering
mismatches are reported to the user. Note that this is only done
for microarchitectural units for which correlation is observed.
MICROSAMPLER will not perform feature ordering extraction
for units that may exhibit random feature orderings with no
correlation.

VI. EXPERIMENTAL SETUP

We evaluate MICROSAMPLER with a system-on-chip design
generated by the Chipyard [3] framework. At the center of Chip-
yard is Chisel, a hardware generation DSL embedded within
the Scala language enabling expressive and paramaterizable
hardware designs. MICROSAMPLER leverages the printf syn-
thesis feature in Chisel, which allows for debugging statements
to be carried along through elaboration and accessible from
simulator backends. This feature is used to instrument tracing
microarchitectural state at cycle granularity, where relevant
structures are identified by their high-level Chisel representation
and statements transcribing their contents are incorporated into
the design with minor modifications. Our prototype SoC used
to simulate the case studies proposed in this work is configured
to use Chipyard defaults with the MegaBoom core; additional
core configurations details can be found in Table III.

To run the case study applications, we make use of
the riscv-pk (proxy kernel) in Chipyard which provides
basic system software support by proxying syscalls to the
host, bootstrapping the processor, setting up virtual memory
and configuring exception handlers. This setup allows for a
meaningful testing environment while also curbing runtime
overheads. We use Verilator backend simulations from which
MICROSAMPLER execution traces are collected.

SoC Configuration MegaBoom SmallBoom
No. Cores 1 1
Fetch,Decode,Issue width=8,4,4 4,1,1
FetchBuffer entries=32 8
ROB entries=128 32
PRF int=128, fp=128 52, 48
LDQ/STQ/LFB entries=32 8
LFB entries=64 8
Branch Prediction type=gshare, entries=2048 gshare, 2048
L1D Cache sets=64, ways=8, mshr=8, tlb=32 64,4,4,8
L1I Cache sets=64, ways=8, fetchBytes=16 64,8,8
Prefetcher type=Next-Line Prefetcher Same

TABLE III: BOOM Core Configuration.

A. Modular Exponentiation

We select the BearSSL [42] and libgcrypt [23] cryptographic
library implementations of the modular exponentiation prim-
itive to use as a baseline. These implementations employ a

conditional-copy of intermediate results in order to be constant-
time, as described in Section II-B.

B. RTL Simulation

The fields of the microarchitectural structures captured from
the features that are input to the statistical analysis phase are
listed in Table IV. The selection of which microarchitectural
units to include in the execution trace and analysis is done
based on design specifications and RTL source analysis. This
step can be automated using a compiler pass to identify all
sub units. All simulations begin in the same reset state.

Tracked Features Feature ID

Store Queue Store Address SQ-ADDR
Program Counter SQ-PC

Load Queue Load Address LQ-ADDR
Program Counter LQ-PC

ROB ROB Occupancy ROB-OCPNCY
Program Counter ROB-PC

LFB LFB Content LFB-Data
Address LFB-ADDR

Execution Units ALU Busy with PC EUU-ALU
Address Generator EUU-ADDRGEN
Div. Busy with PC EUU-DIV
Mult. Busy with PC EUU-MUL

Prefetchers Next-line Prefetcher
Address NLP-ADDR

D-Cache D-Cache Req Address Cache-ADDR
TLB TLB Entries TLB-ADDR
MSHRs Cache Miss Address MSHR-ADDR

TABLE IV: Microarchitectural units analyzed by MICROSAMPLER
in our case studies.

VII. CASE STUDIES

In this section, we detail multiple case studies selected to
illustrate the effectiveness of MICROSAMPLER at identifying
subtle cases of data leakage that originate in flawed constant
time algorithms, implementations, compiler optimizations as
well a microarchitectural features. For each case study we
highlight a possible exploit path.

A. Algorithmic/Compiler Vulnerabilities

We showcase three constant-time versions of modular
exponentiation. The first case exhibits secret-data dependent
behavior introduced by compiler optimizations, the second is
rooted in the interplay between algorithm and microarchitecture,
and the third version is safe.

1) Case ME-V1-CV: Constant Time Modular Exponenti-
ation – Compiler Vulnerability: The ME-V1-CV case study
tests a constant-time implementation of modular exponentiation.
This version is based on the modular exponentiation routine in
libgcrypt (1.5.3). Listing 3 shows the implementation. The
code attempts to camouflage control-flow that is a function of
the secret exponent by unconditionally calling the memmove
function, but assigning the intermediate result to a “dummy”
variable in cases where the copy actually should not be
performed. At first glance at the C code, it appears that the ctl
is first checked, and then depending on its value, the memmove
is called. However, as shown in Figure 3, a high Cramér’s V



1 void
2 CCOPY_v2(uint32_t ctl, void *dst,
3 void *dummy, const void *src, size_t len)
4 {
5 if (ctl) {
6 memmove(dst, src, len);
7 }
8 else {
9 memmove(dummy, src, len);

10 }
11 }

Listing 3: C code implementation of conditional copy in libgcrypt
used in ME-V1-CV .

1 BR_CCOPY_v1:
2 mv a6,ctl
3 mv a5,a2
4 mv a0,dst
5 mv a2,a4
6 mv a1,a3
7 beqz a6,2f
8 1: j <memmove>
9 2: mv a0,dummy

10 j 1b

Listing 4: RV64 assembly of ME-V1-CV where compiler preloads
dst before checking ctl.

value is observed for almost all microarchitectural units tracked
by MICROSAMPLER, indicating a strong correlation between
microarchitectural state and the key values.
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Fig. 3: Cramér’s V value for all microarchitectural units tracked
while running ME-V1-CV .

Upon further analysis, it turns out that compiler optimizations
result in an unbalanced assembly code sequence in which the
compiler preloads dst as the first argument of memmove (a0)
before checking the ctl value. As shown in Listing 4, ctl
value is checked at line 7, if the preloaded value was correct
(branch not taken), memmove is called. Otherwise, the correct
value (dummy) is set at line 9 and another jump is executed
to line 8. As a result, in cases where ctl is 0, two extra
instructions (a mv and a jump) are executed which result in
timing discrepancies across key bits.
Possible exploit path: Although memmove is eventually
executed regardless of key bit value, the extra instructions
that are executed only when key bit is 0 can still contribute to
a measurable timing difference. An attacker can amplify this
timing discrepancy by forcing misprediction on the branch at
line 10 Listing 4.

2) Case ME-V1-MV: Constant Time Modular Exponen-
tiation – Microarchitecture Vulnerability: We also verify a

branchless version of ME-V1-CV where bitwise operations
are used to check the ctl value. Listing 5 shows the
implementation of this test case in C.

1 void
2 brless_ccopy_v1(uint32_t ctl, void *dst,
3 void *dummy, const void *src, size_t len)
4 {
5 void *dest_dummy = (void *)(dummy ˆ
6 (-ctl & (dst ˆ dummy)));
7 memmove(dest_dummy, src, len);
8 }

Listing 5: Branchless C code of ME-V1-MV implementation.

Figure 4 shows the Cramér’s V for each functional block
while running the ME-V1-MV code. We immediately note that,
in contrast to ME-V1-CV , the measured correlation for half of
functional units is lower than 0.2, indicating low secret data
correlation for those units. The rest of microarchitectural units
with high correlation correspond to memory accesses. Among
these is Store Queue Address (SQ-ADDR), which records
the destination addresses of store instructions in the Store
Queue, each cycle. This indicates that destination addresses
of some stores may correlate to key bit values. In order to
identify the features most responsible for the high correlation
MICROSAMPLER also extracts the unique features for each
tracked microarchitectural structure. (Section V-C3).
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Fig. 4: Cramér’s V values for multiple functional blocks while
running the ME-V1-MV code.

Figure 5 shows the distribution of all features (store
addresses) for the SQ-ADDR unit. We observe that some
of these features are unique to certain classes. Using the
MICROSAMPLER execution log, we automatically identify the
instructions that produce these addresses and find that they all
belong to the memmove() function in the ME-V1-MV code
(Listing 5). These data-dependent stores to distinct addresses
represent a potential vulnerability. We ran the same feature
extraction analysis on the rest of the units with high Cramér’s
V (e.g., LFB-ADDR, NLP-ADDR, etc.) and found that all the
identified features are byproducts of store instructions executed
by memmove().
Possible exploit path: Secret-dependent store addresses can
lead to the formation of a timing channel. For example, flushing
one of the memory regions (either dst or dummy) from the
cache will result in an execution time difference depending on
the destination of memmove, which depends on the value of
the secret key.
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Feature IDs (SQ-ADDR)

Key Bit 1

Key Bit 0

Fig. 5: SQ-ADDR feature uniqueness for ME-V1-MV . Red/Blue dots
represent unique features (i.e., addresses) in each class.

In order to demonstrate that the identified vulnerability
can lead to the formation of a timing channel, we simply
initialize one of the memory regions (dst) to arbitrary values,
which brings them into the cache. This results in cache hits
for memmove to dst. Figure 6b shows the distribution of
execution cycle counts across all runs with the dst memory
region initialized (present in L1D). We can see that the
iterations where the initialized value (dst) is accessed by
memmove are almost always slightly faster (lower cycle count)
compared to the other iterations. However, Figure 6a (both
dst and dummy are uninitialized) shows largely overlapping
distributions making it impossible to distinguish from timing
information alone. This shows that MICROSAMPLER is able to
detect a potential timing vulnerability even though no timing
leakage exists in the ME-V1-MV code running under normal
conditions. This highlights the importance of joint verification
of the software and hardware. MICROSAMPLER is able to
automatically pinpoint these potentially vulnerable addresses,
first by identifying that the SQ-ADDR is leaky and then by
identifying the most correlated features (addresses) that could
be exploited in an attack.

The TLBleed attack [24] found that if the dummy and
working set result variables map to different pages, alternating
accesses can lead to dTLB misses and a corresponding data-
dependent delay, which is measurable through a timing side-
channel.

3) Case ME-V2-Safe: Safe Constant Time Modular Exponen-
tiation: The ME-V2-Safe case study uses the BearSSL library
constant-time modular exponentiation. This implementation
employs a branchless assignment in the form of Equation 1,
with Listing 6 showing the corresponding assembly implemen-
tation. The branchless assignment itself is implemented as a
boolean expression, trading high-latency arithmetic (which can
pose security risks) for logical operations.

Figure 7 shows the Cramér’s V measurement across all
the microarchitectural units we track, while running ME-V2-
Safe. The results show that across the board the measured
correlation is statistically insignificant. These results reflect
the soundness of this constant-time implementation on this
particular microarchitecture, with respect to our threat model.
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(a) No prior access to either dst or dummy.
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(b) dst is initialized prior to sampling.

Fig. 6: Distribution of execution cycle counts across all runs for
ME-V1-MV .
1 CCOPY:
2 add a3,a3,a2
3 negw a0,a0
4 1: bne a2,a3, 2f
5 ret
6 lbu a4,0(a1)
7 lbu a5,0(a2)
8 addi a2,a2,1
9 addi a1,a1,1

10 xor a5,a5,a4
11 and a5,a5,a0
12 xor a5,a5,a4
13 sb a5,-1(a1)
14 2: j 1b

Listing 6: BearSSL conditional-copy implementation used in the
modpow function. RV64GC.

B. Microarchitectural Vulnerabilities

In this section, we discuss a case study where the cause of
data-dependent behavior is rooted in microarchitectural design.
We show how complex microarchitectural optimizations such
as scheduler optimizations can form data-dependent behavior
that is not easy to discover without having full visibility into
microarchitectural state.

1) Fast Bypass Implementation in BOOM: Computation
simplification methods seek to reduce or eliminate instruction
execution when operand values satisfy certain conditions. These
techniques have been shown on both complex operations (e.g.,
square root) and simple integer operations (ADD/AND/OR)
[26], [29], [62].

We modify the BOOM processor design to add such an
optimization, which we call “fast bypass”. Figure 8 shows the
implementation of the fast-bypass optimization in the BOOM
pipeline (2-wide in this example) and illustrates the effect
of this optimization on ME-V2-Safe code. In the step 1 ,
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Fig. 7: Cramér’s V measurement for all microarchitectural units
tracked while running ME-V2-Safe.

two instruction (I1 & I2) are fetched/decoded/renamed and
passed to the issue unit waiting for their operand to become
available. 2 At this stage, two checks are performed on the
instructions being renamed: (1) is opcode equal to AND, and
(2) are the operands of the AND available.
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Fig. 8: Fast Bypass optimization on BOOM.

At this point, we have two options: 2.1 If the AND’s
operands are available, we can get the most updated values
from the physical register file. If the AND’s operands are still
waiting for the completion of a previous instruction 2.2 we
check the ALU bypass network. In BOOM, the results of all
ALU operations remain in the bypass network for 3 cycles
before being written to the register file. The next step 3 is to
check the value of the operand and, if it is equal to zero, we
can safely assume this AND instruction does not need to be
executed and we directly write zero to the AND instruction’s
destination register. Next 4 , we send a signal to the issue
window to mark the operands of any instructions dependent on
the AND as ready. In the case of ME-V2-Safe, the XOR’s first
operand is dependent on the AND, and with this optimization
in place, it can be issued in the same cycle as the AND. In the
baseline design the XOR had to wait for AND to execute and
then it could be issued. Finally 5 , a signal is sent to the ROB
to mark the AND as complete.

2) Case ME-V2-FB Safe Modular Exponentiation on BOOM
Fast Bypass: We use the MICROSAMPLER framework to verify
if the effects of this optimization impact the correct constant
time implementation of modular exponentiation from ME-V2-

Safe. Figure 9 shows the measured Cramér’s V values after
running the ME-V2-Safe code on the BOOM processor with
the fast bypass optimization. We can see that, unlike ME-V2-
Safe which showed no leakage (Figure 7), ME-V2-FB shows
high Cramér’s V for several functional units (Figure 9). When
examining the feature uniqueness and feature ordering of the
leaking units, we found that no feature in SQ-PC and SQ-
ADDR can be attributed to the observed high Cramér’s V value.
To identify the source of correlation, we removed the timing
effects from the SQ-PC and SQ-ADDR iteration snapshots
by consolidating consecutive occurrences of the same values
to a single value. Next, these snapshots were hashed and the
rest of MICROSAMPLER flow is followed. The orange bars in
Figure 9 represent the correlation measurement with the timing
information removed. We note that the high Cramér’s V is
no longer present for SQ-PC and SQ-ADDR confirming that
the observed correlations for these units were due to timing
differences introduced by the fast bypass optimization.
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Fig. 9: Cramér’s V values for multiple microarchitectural units while
running ME-V2-FB, for iteration snapshots with and without timing
information.

After applying the feature uniqueness test to the ALU,
MICROSAMPLER identifies a single instruction that is unique
to key bit=1. This is the same AND instruction that gets skipped
when one of the inputs are ‘0’. In Listing 2, we can see the
control-bit (b, representing the key bit value) will be an operand
to an AND instruction (line 17). This means the fast-bypass
optimization is only triggered for key bit values of ‘0’ and
consequently the AND instruction is only sent to the ALU
when the key bit is ‘1’. Also, using MICROSAMPLER’s feature
ordering, we identified that the high correlation observed for
ROB-PC is due to instruction ordering differences in ROB
entries, caused by the fast bypass optimization. When the
optimization is triggered, both XOR and AND instructions
occupy the same ROB entry while in normal execution, XOR
is scheduled first and AND goes in the next ROB entry.

This shows that MICROSAMPLER is able to correctly pin-
point data dependent execution on the ALU cluster. In the
case of ME-V2-FB, the fast bypass optimization results in
timing leakage that breaks the constant time implementation
of the modular exponentiation algorithm. The ME-V2-FB case
illustrates a previously safe constant time implementations of a
security critical primitive that is rendered unsafe due to a simple
microarchitectural optimization that can appear benign. This
shows the importance of jointly testing security critical code



and the detailed, RTL-level implementation of the architecture.

C. Additional Case Studies

We evaluate MICROSAMPLER on 28 additional constant time
primitives from OpenSSL. The full list of all tested primitives is
included in Table V. These primitives perform basic operations
such as memory comparison, equality checking, conditional
swap, etc. and are designed to execute in constant time.
MICROSAMPLER analysis reveals no statistically significant
correlation between microarchitectural states and the secret
inputs for the tested primitives except for the constant-time
implementation of memory comparison CRYPTO_memcmp.

Constant-time OpenSSL Primitives Leakage
Identified

Constant-time Memory Comparison
CRYPTO memcmp() ✓

constant time eq/eq 8/eq int/eq int 8/eq bn() ×
constant time select/select 8/select 32/select 64() ×
constant time ge/ge s/ge 8 s() ×
constant time lt/lt s/lt 32/lt 64/lt bn() ×
constant time cond swap/swap 32/swap 64/swap buff() ×
constant time lookup() ×
constant time is zero/zero s/zero 8/zero 32/zero 64() ×

TABLE V: List of all tested OpenSSL constant-time primitives.

1) Constant Time Memory Compare and Transient Execu-
tion: The OpenSSL CRYPTO_memcmp constant time memory
compare primitive, compares the content of two memory
regions in constant time. Listing 7 shows the RISC-V assembly
implementation used in several OpenSSL functions. In many of
those instances there is an immediate control flow divergence
depending on the CRYPTO_memcmp return value, as shown
in Listing 8. We generated 32 32-byte input values for inputs a
and b with varying distributions of (in)equal bytes selected to
increase testing coverage. We extend the MICROSAMPLER re-
gion of interest to also sample the microarchitectural traces of a
few instructions that use the return value of CRYPTO_memcmp.

Figure 10 shows the correlation measurements across all the
microarchitectural units we track. We observe low Cramér’s
V for all microarchitectural traces except the ROB. The
MICROSAMPLER feature ordering extraction applied to the
ROB helps pinpoint that in some runs, PCs for equal and
inequal are present in ROB in two different stages of
program execution. Here is the call patterns we observed:

1) a call to inequal then inequal.
2) a call to equal then inequal.
3) a call to equal then equal.
Naturally, we expect only one call to either inequal or

equal depending on the memory regions pointed to by a
and b in each run. However, these double calls mean that
due to misprediction of a branch inside CRYPTO_memcmp
that checks whether all len bytes are compared, the function
speculatively returns prematurely and the return value is used
to drive the control flow. When the function returns with the
correct value (all bytes compared) there is another call to
(in)equal. By examining the MICROSAMPLER log, we
observed that the branch at line 14 in Listing 7 is mispredicted
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Fig. 10: Cramér’s V for all microarchitectural units tracked while
running CT-MEM-CMP.

1 # int CRYPTO_memcmp(const void *in_a,
2 # const void *in_b, size_t len)
3 CRYPTO_memcmp:
4 li $x,0
5 beqz $len,2f # len == 0
6 1:
7 lbu $temp1,0($in_a)
8 lbu $temp2,0($in_b)
9 addi $in_a,$in_a,1

10 addi $in_b,$in_b,1
11 addi $len,$len,-1
12 xor $temp1,$temp1,$temp2
13 or $x,$x,$temp1
14 bgtz $len,1b
15 2:
16 mv a0,$x
17 ret

Listing 7: OpenSSL constant time CRYPTO_memcmp RISC-V
assembly implementation.

to not taken for the first byte in some runs, resulting in the
premature return from CRYPTO_memcmp.

Possible exploit path: The partial (speculative) result of
CRYPTO_memcmp is used to determine the direction of the
branch in Line 9 of Listing 8. This creates a secret-dependent
control flow divergence that can be exploited by an attacker. We
assume a threat model in which the attacker is able to supply
inputs to the victim, as well as co-locate an attack process
on the same machine as the victim. For example, an attacker
could induce a measurable slowdown in execution of one of
the secret dependent code paths (e.g. the equal function –
Line 1 in Listing 8) by flushing its code from the Instruction
Cache. The attacker would also mistrain the branch at line 14
in Listing 7 to induce controlled mispredictions. As a result,
the victim process will transiently execute either the equal
or inequal paths, depending on the outcome of the byte
comparison. Next, the attacker measures the victim’s execution
time. If the compared bytes were in fact equal, the victim’s
execution time is slower, due to the iCache miss. By repeating
this process with different inputs, the attacker can brute-force
the value of the first secret byte. After learning the first byte,
the attacker can lock the leaked byte, and re-run the program
forcing a branch misprediction after the next byte is compared,
repeating the process until the entire secret is revealed.

To the best of our knowledge, this vulnerability has not been
observed before. We disclosed this vulnerability to OpenSSL
and they reported that local side-channel attacks (i.e., attacker
running on the same machine) fall outside of OpenSSL threat



1 uint32_t equal(uint32_t val){
2 ...
3 }
4 uint32_t inequal(uint32_t val){
5 ...
6 }
7 uint32_t run(const void *a, const void *b, size_t len){
8 volatile uint32_t result;
9 if (CRYPTO_memcmp(a, b, len) == 0)

10 result = equal(0);
11 else
12 result = inequal(1);
13 return result;
14 }

Listing 8: Control flow dependency on CRYPTO_memcmp return
value.

model. OpenSSL believe that there is no software fix for this
vulnerability.

D. Discussion

Input Coverage: MICROSAMPLER is intended to be used for
verifying data-oblivious execution in security critical applica-
tions with well-defined secrets (e.g., cryptography algorithms).
As many of these algorithms operate on secret values in smaller
chunks (e.g., windows of bits), covering all possible valid
inputs is feasible. We also utilize a p-value test to confirm
sufficient input diversity and maintain the statistical significance
of observed correlations.

False Positives: MICROSAMPLER could produce false
positives in the form of high Cramér’s V values when no
statistically significant correlation exists. This can be caused by
insufficient samples of microarchitectural snapshots (Figure 2).
This is more likely to occur if the size of the microarchitectural
snapshot is larger (e.g. tracking a larger ROB). We prevent
such false positives by measuring the statistical significance of
the Cramér’s V values using the p-value test. We increase
the number of inputs to the simulation until the p-value
falls below a threshold (0.05).

False Negatives: MICROSAMPLER can have false negatives
if some secret-correlating structure is excluded from tracking.
This can be mitigated by automating the selection of tracked
structures. However, MICROSAMPLER is not a formal tool so
it cannot prove the absence of vulnerabilities.

Performance and scalability: The MICROSAMPLER perfor-
mance overhead scales mostly linearly with design size. Table
VI lists the performance overhead breakdown for different
MICROSAMPLER stages while running ME-V1-CV with 4
different 1024-bit keys on MegaBoom. We also measured
the analysis time for the same test running on the smaller
SmallBoom configuration (Table III). MICROSAMPLER runs
in about 60 minutes with SmallBoom and 129 minutes with
MegaBoom, which is approximately four times larger than
SmallBoom with respect to size of structures (e.g., ROB). To
illustrate MICROSAMPLER’s scalability compared to formal
verification tools, we include the verification time of XENON
[28] for a couple of designs of different sizes: a simple
ALU and a small in-order RISC V CPU (SCARV [43]), as
reported in [28]. Table VII summarizes the analysis time
of MICROSAMPLER for the SmallBoom and MegaBoom

configurations, compared to XENON for the two designs. We
can see that the XENON formal tool experiences a 336×
increase in analysis time for an 8× larger design. This is
in contrast to MICROSAMPLER’s analysis time, which only
increases by about 2× for a roughly 4× larger design. Note that,
while the verification time for SCARV is smaller in absolute
terms compared to SmallBoom on MICROSAMPLER, it is
also a much smaller and simpler design (e.g. in-order vs. out-
of-order).

MicroSampler Flow
Avg. Time

Mega-
BOOM

1- Execute program with varying inputs on top of an
RTL simulator ∼35mins

2- Extract and parse all traces from the simulation log
and generate microarchitectural iteration snapshots ∼51mins

3- Calculate Cramer’s V measure of association for all
tracked structures ∼30mins

4- Extract feature (PCs, addresses, etc.) responsible for
high correlation ∼13mins

Total Analysis Time ∼129mins

TABLE VI: Execution time breakdown for MICROSAMPLER running
ME-V1-CV with 4, 1024-bit keys (4096 iterations).

Design (Size) Analysis
Time Scalability

MicroSampler SmallBoom (1x) 60m 4x Size / 2x TimeMegaBoom (4x) 129m

XENON [28] ALU [58] (1x) 2.5s 8x Size / 336x TimeSCARV [43]
(8x) 14min

TABLE VII: MICROSAMPLER scalability compared to XENON
formal verification framework

VIII. CONCLUSION

This paper presented MICROSAMPLER, a cross-stack, scal-
able security testing framework for leakage detection in
constant-time execution kernels. We highlight MICROSAM-
PLER’s ability to reveal vulnerabilities in constant time crypto-
graphic primitives in cases where the vulnerabilities originate in
the algorithm, compiler and/or microarchitectural optimizations,
including a previously unreported vulnerability in OpenSSL.
We make the case that it is of crucial importance to jointly test
the software, compiler and microarchitectural implementation
in order to produce trustworthy security critical applications
and architectures.
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