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SUMMARY

Technology scaling is having an increasingly detrimental effect on microprocessor reliability, with increased
variability and higher susceptibility to errors. At the same time, as integration of chip multiprocessors
increases, power consumption is becoming a significant bottleneck. To ensure continued performance,
growth of microprocessors requires development of powerful and energy-efficient solutions to reliability
challenges. This paper presents a reliable multicore architecture that provides targeted error protection by
adapting to the characteristics of individual cores and workloads, with the goal of providing reliability with
minimum energy. The user can specify an acceptable reliability target for each chip, core, or application.
The system then adjusts a range of parameters, including replication and supply voltage, to meet that relia-
bility goal. In this multicore architecture, each core consists of a pair of pipelines that can run independently
(running separate threads) or in concert (running the same thread and verifying results). Redundancy is
enabled selectively, at functional unit granularity. The architecture also employs timing speculation for mit-
igation of variation-induced timing errors and to reduce the power overhead of error protection. On-line
control based on machine learning dynamically adjusts multiple parameters to minimize energy consump-
tion. Evaluation shows that dynamic adaptation of voltage and redundancy can reduce the energy delay
product of a chip multiprocessor by 30� 60% compared with static dual modular redundancy. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transistor scaling to minute sizes makes modern microprocessors increasingly prone to reliability
problems. As transistors shrink and their integration increases, they become more vulnerable to both
transient and permanent faults. To ensure the continued growth in chip performance, microproces-
sors must become more resilient to errors, requiring more hardware resources to be devoted to fault
tolerance and mitigation. At the same time, power consumption is emerging as one of the most
significant roadblocks to future technology scaling according to a recent report by the International
Technology Roadmap for Semiconductors (ITRS) [1]. Power delivery and heat removal capabili-
ties [2] are already limiting performance in microprocessors today and will continue to severely
restrict performance in the future [3]. As a result, reliability solutions for future microprocessors
must become much more energy efficient and must work within limited power budgets.

This paper presents a chip multiprocessor architecture that achieves reliable and energy-efficient
operation by dynamically adapting the amount of error protection to the characteristics of each
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individual chip, its runtime behavior and the desired level of error resiliency. The ability of the sys-
tem to dynamically adapt allows it to operate reliably within defined targets without waisting energy
on high safety margins or over-provisioning.

The proposed system allows failure rate targeting in which the user or the system is allowed to
specify an acceptable failures-in-time rate (or FIT target) for the entire chip or individual cores.
The ability to set a FIT target allows the same chip multiprocessor (CMP) to be deployed in sys-
tems with different reliability requirements such as laptops or servers. FIT targets can be changed at
runtime, allowing different reliability goals to be assigned to individual applications with different
requirements. An operating system kernel or financial application may require very high protection.
On the other hand, less critical applications such as word processors and video players can tolerate
the occasional error and therefore require only a moderate or low level of protection. Adapting the
level of reliability protection to the goals of the system and the application improves the energy
efficiency of the system.

The building block of the proposed multicore architecture is a pair of pipelines that can run
independently (separate threads) or in concert (running the same thread and checking for errors).
Redundancy is enabled selectively, at pipeline stage granularity. The architecture also employs a
novel mechanism for timing speculation that is used to recover from variation-induced timing errors.
The timing speculation support also allows fine-grain voltage tuning that significantly reduces the
energy overhead of the error protection mechanism.

The dynamic adaptation of the processor is controlled by an optimization algorithm implemented
in firmware. The algorithm adjusts a range of parameters, including which functional units (FUs) are
replicated and their supply voltage, to meet that target with minimum energy. The control system
relies on models of key parameters of the system such as power consumption and expected error
rates. In the presence of variation, these parameters are difficult to model analytically, so we use
machine learning-based models that are trained at runtime.

Compared with a system with static dual modular redundancy (DMR), our solution reduces the
average energy delay product by 30% when no errors are allowed and up to 60% as the FIT target
is relaxed. We implemented the building blocks for our architecture in a simple reduced instruction
set computer processor. On the basis of the synthesis results, we find the area overhead to be about
4% and the impact on cycle time to be about 10% compared with static DMR.

This paper makes the following contributions:

� Introduces FIT targeting that allows the degree of error protection to vary dynamically to
reduce energy usage.
� Presents an architecture that provides simultaneous protection against soft and timing errors

and some hard errors.
� Proposes a machine learning approach to online modeling of power consumption and timing

errors of variation-affected, unpredictable CMPs, and an optimization algorithm based on hill
climbing that uses these models to find optimal energy configurations.
� Presents a novel implementation of timing speculation that uses pipeline registers of the shadow

pipeline instead of dedicated flip-flops. This implementation allows no-cost timing speculation
when full replication is enabled.

Section 2 provides some background on error classes and the implications of process variation.
Section 3 discusses related work. Section 4 presents implementation details of the proposed
architecture. Section 6 describes runtime control and optimization options for this architecture.
Experimental setup is described in Section 7 and evaluation in Section 8. Section 9 concludes.

2. BACKGROUND

2.1. Error classes

The proposed architecture addresses three classes of errors. Soft errors, or single event upsets, occur
as a result of particle strikes due to cosmic radiation or radiation originating from the chip pack-
aging material. As technology scales, the soft error rate in chips is expected to increase as a result

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
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of the increase in the number of transistors (increasing the likelihood of an error as a result of a
strike) and the lower operating voltages. Timing errors occur when the propagation delay through
any exercised path in a pipeline stage exceeds the cycle time of the processor. Timing errors can
have multiple causes including variation in threshold or supply voltages, circuit degradation as a
result of aging, high temperature, and so on. Hard errors are permanent faults in the system caused
by breakdown in transistors or interconnects. Several factors can cause permanent failures including
aging, thermal stress, and manufacturing variation.

2.2. Process variation

Process variation refers to deviations in transistor parameters beyond their nominal values and
results from manufacturing difficulties in very small feature technologies [4].

Several transistor parameters are affected by variation. Of key importance are the threshold
voltage (Vth) and effective gate length (Leff). These directly impact a transistor’s switching speed
and leakage power. The higher the Vth and Leff variation, the higher the variation in transistor speed
across the chip. This slows down sections of the chip, resulting in slower processors, because the
slower transistors limit the frequency of the whole processor. This also increases the likelihood
of timing errors. Also, as Vth varies, transistor leakage varies across the chip. However, low-Vth

transistors consume more power than high-Vth transistors save, resulting in significantly increased
overall power consumption.

Overall, process variation makes both power consumption and susceptibility to timing errors
unpredictable at design time. As technology scales and variation gets worse, higher safety
margins (such as high supply voltage) will be needed to ensure reliable operation. Techniques that
adapt to post-manufacturing characteristics and runtime behavior, such as the ones proposed in this
work, will be needed to build energy-efficient systems.

3. RELATED WORK

3.1. Error detection, correction, and recovery

Several existing or proposed architectures deal with soft errors by replicating entire FUs. The
IBM G5 [5] uses full replication in the fetch and execution units with a unified error-correcting
code (ECC)-protected L1 cache. Others proposed replication and checking for soft errors at latch
level [6]. Fine-grain replication is appealing because it allows targeted protection of only the
sections or paths in a chip that are deemed most vulnerable at design time. However, dynami-
cally enabling/disabling replication at latch level would make control very complex and costly. Our
architecture uses replication at FU granularity that is selectively enabled at runtime depending on
desired protection.

Techniques that detect and correct timing errors take two main approaches. One is to use
secondary latches to capture the delayed signals such as in Razor [7]. Another uses a simple checker
that verifies execution of the main processor as in DIVA [8]. Timing speculation has been used to
reduce voltage aggressively to save power [7] or to over-clock a processor to improve performance
[9]. We implement timing speculation differently from prior work. We use the pipeline registers of
the shadow pipeline instead of special flip-flops.

Previous work on hard faults has proposed mechanisms for efficient detection of hard errors using
the processor’s built in self-test mechanism [10] and using spare logic to replace faulty components
[11, 12]. In Core Cannibalization [11], pipelines are arranged in triples; two pipelines are used for
execution, and the third is used for spare parts at the pipeline stage granularity. In StageNet [12],
multiple processor pipelines are interconnected using crossbar switches after each pipeline stage,
allowing rerouting of instructions in case of failures. The complex routing logic introduces longer
and variable pipeline latency, requiring additional logic to make up for the loss of result forwarding.
Our design groups pipelines into pairs, with simple two-way routing logic with less impact on the
processor design.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe
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3.2. Dynamic optimization and control

EVAL [13] uses on-line adaptation of supply voltage and body bias, controlled by a machine
learning algorithm. EVAL is targeted exclusively at timing errors and improving performance in
the face of process variation. Although EVAL is efficient for this purpose, it has no capability to
mitigate soft errors or hard failures.

EVAL’s machine learning algorithm is adaptive to variation, but it is used as a means to speed up
configuration parameter search. By contrast, our system uses machine learning to directly model the
effects of parameter variation on power and probability of timing errors. Our architecture solves a
different optimization problem that considers pipeline stage replication in addition to supply voltage
and tolerates timing errors to further lower voltage.

Aggarwal et al. [14] present a mechanism for partitioning CMP blocks at coarse granularity.
Processor cores and memory controllers can be configured into groups to achieve, among other
possibilities, dual and triple modular redundancies. This system can be configured for different
reliability needs, but the coarse granularity makes the approach less flexible. Our architecture
provides redundancy and checking at fine granularity, allowing more efficient recovery and more
targeted error protection.

In [15], authors present a reinforcement learning approach to schedule requests from multiple
out-of-order processors competing for access to a single off-ship dynamic random access memory
channel. In a circuit area no worse than a branch predictor, they enjoy a 22% boost in through-
put over other cutting-edge schedulers. Bitirgen et al. applied an artificial neural net (ANN) to the
problem of optimizing system resource allocation [16].

4. ARCHITECTURAL SUPPORT FOR RELIABILITY ADAPTATION

In this architecture, each core consists of a pair of pipelines. Routing and configuration logic allows
each pipeline to run independently (each running a separate thread) or in concert (both running the
same thread and checking results at the end of each pipeline stage). Routing and checking logic is
provided at pipeline stage granularity.

4.1. Support for soft error detection

Figure 1 shows an overview of a pipeline pair on the basis of the Intel Core architecture. Some
blocks in the diagram, such as Decode, are comprised of multiple pipeline stages, and the Execute
block stands in for several multistage FUs, including integer and floating point arithmetic and logic
units, and load/store. One pipeline is always enabled, referred to as the main pipeline. The second,
shadow, pipeline can have some of its FUs selectively enabled. Each pipeline stage has routing and
checking logic, indicated by c=r in the diagram. All stages are separated by simple two-way routers
(multiplexers) that allow results from one stage to be routed to the inputs of the next stages in both

Release

Release

Fetch Decode RS Execute RoB

Fetch Decode RS Execute RoB

c/r c/rc/r [c
/r

]
C

om
m

it

c/r c/rc/r c/r c/rc/rc/r

L1D
Mem
Arb

L1I
Mem
Arb

Figure 1. Architecture of the proposed pipeline pair for one core, with routing and checking logic at
pipeline stage granularity. Mem Arb, arbitration logic; RS, reservation station; c=r , checking and routing

logic; RoB, reorder buffer.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
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Figure 2. Replicated pipeline stage with routing and checker. Both main and shadow stages and enabled.
Inputs to the next enabled shadow stage are routed from the previous main stage (shown by arrows

labeled data).

pipelines. This allows stages that are disabled in the shadow pipeline to be bypassed. The shadow
stages that are enabled can receive their inputs from the previous stage of the either pipeline.

We assume a deterministic out-of-order architecture. Although instruction scheduling decisions
are made dynamically, if the two pipelines start with identical initial conditions and receive identical
inputs, they will make identical scheduling decisions. At each pipeline stage, computation results
and control signals are forwarded to checkers. Checkers are used to verify the computation of stages
that are replicated. The checking takes place in the cycle following the one in which the signals are
produced, and the inputs to the checkers come from the pipeline control and data registers. This
keeps checkers out of the critical path.

Figure 2 shows a pair of pipeline stages with replication fully enabled, and Figure 3 shows partial
replication for detecting only timing errors.

Fetch and Decode are replicated, and individual pipeline stage outputs are verified by check-
ers. The reservation station (RS) allows for register renaming and forwarding of operands between
instructions. The RS (also replicated) has multiple outputs corresponding to each compute unit it
serves (i.e., arithmetic and logic unit, multiplier, load/store). The RS outputs corresponding to each
compute unit are verified by separate checkers. The RS entry is not freed until commit from the
reorder buffer (RoB) succeeds. In the following cycle, checkers compare the issued instructions.
The same is true for each pipeline stage of each Execute unit.

Retirement from the RoB is handled by a special Commit unit. When only timing speculation
is being performed, Commit acts like any other checker; if a timing error is detected, execu-
tion is stalled, and results are taken from the shadow pipeline. When full replication is enabled,
Commit checks the integrity of instructions dequeued from the two RoBs. If a disagreement is
detected, Commit discards the instruction and signals reservation station(s) to reissue. The Commit
stage is not replicated and represents a potential single point of failure. To protect it, some other
hardening approach must be used. For instance, latch-level redundancy [6] or transistor upsizing
can be employed.

The L1 instruction and data caches are not replicated and are shared by the two pipelines. The
caches are protected by ECC so replication is not necessary for data integrity. Cache supply voltage
is kept high enough to avoid timing errors. In replicated mode, both pipelines fetch the same instruc-
tions and data from the L1. In independent mode, the two pipelines fetch separate instruction and

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe

 15320634, 2013, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.2898 by O

hio State U
niversity O

hio Sta, W
iley O

nline L
ibrary on [13/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RUNTIME FAILURE RATE TARGETING FOR ENERGY-EFFICIENT RELIABILITY 795

data

FAIL

CHECK

Logic Logic

Pipeline Reg

(C
LK

)

(C
LK

)

Pipeline Reg

Pipeline Reg Pipeline Reg

Logic Logic

ROUTE ROUTE

CHECK

(b)

R
ol

lb
ac

k

Figure 3. Replicated pipeline stage with routing and checker. Shadow stage is partially disabled (in gray).
Inputs to the next enabled shadow stage are routed from the previous main stage (shown by arrows

labeled data).

data streams from a shared L1. To ensure fairness, half of the cache ways (of set associativity) are
reserved for each pipeline. Arbitration logic manages memory allocation and requests in the cache.
When full replication is enabled, both pipelines will request the same access; arbitration ensures that
the addresses (and data for writes) are the same, issues one access to the memory array, and returns
data to both pipelines.

4.2. Support for timing speculation

This architecture can also be configured to implement timing speculation at pipeline stage granu-
larity. Timing speculation is useful in mitigating the effects of variation on circuit delay and also
allows the aggressive lowering of supply voltage to save power. If a FU is not fully replicated,
this is achieved by selectively enabling only the pipeline registers of the shadow pipeline, which
has a slightly delayed clock at the same clock frequency as the main pipeline. Using routing logic,
computation results of a stage in the main pipeline are also latched in the pipeline registers of the
shadow pipeline as shown in Figure 4. The delay in the shadow pipeline’s clock (�T ) gives extra
time to the signals propagating through the main pipeline. Computation results are latched in the
main pipeline’s register at time T and in the shadow pipeline’s register at time T C�T . If a timing
error causes the wrong value to be latched by the main pipeline, the extra time �T will allow the
correct value to be latched in the shadow register. The content of the two registers is compared by a
checker in the next cycle.

Our implementation is different from previous work [7] in that we use the shadow pipeline
registers as a safety net for delayed signals, instead of special flip-flops. Our approach has sig-
nificant advantages: it allows us to cover all the critical paths in the system rather than trying to
predict which paths are likely to be critical (which is almost impossible because of variation), and it
also allows no-cost timing speculation for FUs that have full replication enabled.

4.3. Support for mitigation of hard faults

Although it is not the main focus of this paper, this architecture can cope with some hard faults.
When the two pipelines have complementary failures, they can be merged at pipeline stage
granularity to form one functional pipeline, as in [11].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe
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Figure 4. Main and shadow pipeline stages with timing speculation enabled. Only the shadow registers are
turned on in the shadow pipeline.

4.4. Error recovery

Errors are detected by comparing the content of the main and shadow pipeline registers (data and
control signals). The comparison takes place in the cycle following the computation. When the
results disagree, a stall signal is asserted and recovery is initiated. The recovery process depends on
the type of error each FU is configured to capture.

When a FU is configured to detect only timing errors, the pipeline registers in the shadow pipeline
have extra time to latch the results of the previous stage and are therefore assumed to hold the cor-
rect results. These recovered results are forwarded to the corresponding pipeline register in the main
pipeline through the routing logic as shown in Figure 4. Execution then resumes with the correct
result in the main pipeline register. The penalty for a timing error is at most two cycles and may be
hidden if it occurs after the RS stage.

When a FU is fully replicated, both soft and timing errors can be detected but not distinguished.
When an error is detected in the reservation station or a stage prior, the checker triggers a full
pipeline flush followed by a re-execution, similar to a branch mispredict. When an error is detected
in a stage following the RS, the checker logic in Commit causes the instruction to be discarded
and reissued from the RS. If the fault was caused by a soft error, re-executing the instruction will
eliminate the fault. However, if the error is timing related, it is likely to reoccur. To deal with the
latter case, both instructions and stages that experience errors are flagged with an error marker. If
the error occurs again in the same stage, while executing a marked instruction, the error is assumed
to be timing related, and the correct result is forwarded from the shadow pipeline register.

The checkers represent single points of failure in this system. Because checkers are small,
hardening (transistor replication and upsizing) can be carried out with low overhead.

4.5. Additional hardware needed

Routing and checking – The routing configuration for a FU pair selects which block of combinato-
rial logic feeds each pipeline register. Each pair of pipeline stages has an associated checker that can
detect when the pair of pipeline registers disagrees. This can be enabled when pipelines are running
in lockstep or phase-shifted.

Power gating – Each FU and each pipeline register can be enabled separately. Power gating cuts
both leakage and dynamic power by disconnecting idle blocks from the power grid. This technique
has been extensively studied and can be implemented efficiently at coarse (FU) granularity [17].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe
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Voltage selects – As part of a strategy to minimize energy consumption, we allow different FUs
to receive different supply voltage levels. Depending on the number of separate voltages needed,
different hardware support is needed. To keep the overhead low, rather than providing each FU with
its own supply voltage, one option is to have only two or three voltage levels. Each FU (and its
pipeline register(s)) selects among those. For two or three voltage levels, off-chip voltage regulators
are sufficient. Chips in production today commonly use several voltage domains [18] using off-chip
regulators. To provide each FU with its own voltage, on-chip voltage regulators [19] must be used.

Clock controls – There are two phase lock loop circuits for each pipeline pair, and each phase
lock loop produces a configurable clock signal, along with a phased-delayed clock with configurable
delay for timing speculation.

5. FAILURE RATE TARGETING

An important feature of the proposed architecture is its ability to adapt to different reliability goals
depending on the needs and resource constraints of the system. When maximal protection against
soft errors is not needed, some redundancy can be selectively and dynamically disabled to reduce
power. The system designer can choose a tolerable error rate or FIT (the number of failures for 1
billion hours of operation). For instance, IBM targets a FIT of 114 or 1000 years mean time between
failures (MTBF) for its Power2 processor-based systems [20].

A FIT target can be set for the entire CMP, for individual cores, or per-application. This allows
the system to adapt the level of protection against soft and timing errors to different applications
and environments. For instance, a core running essential system services might be configured with
a low FIT target, whereas cores running user services might tolerate a higher FIT. Moreover, when
targeting a system FIT rate, the number of cores in the system will determine the per-chip FIT rates
because their contribution to the total FIT rate is additive. The expected FIT for a core is the sum
of the FIT for all its FUs. In our system, caches are protected with ECC, so their contribution to the
expected system FIT rate is assumed to be zero. The FIT rate for a FU with full redundancy enabled
is also assumed to be zero. If redundancy is not enabled, the FIT rate is a function mainly of the raw
soft error rate for that FU, its supply voltage and the FU’s architectural vulnerability factor (AVF),
or a probability that a soft error will result in an actual system error.

Previous work [21, 22] has demonstrated that predicting AVF is possible and practical at runtime
by examining a set of architectural parameters such as number of instructions executed per cycle,
RoB utilization, branch mispredictions, reservation station utilization, instruction queue utilization,
and so on. We use a similar approach to predict dynamic AVF, but at FU granularity.

5.1. Saving energy with timing speculation

In addition to selective replication, timing speculation is used to save power independent of the FIT
target. To reduce power consumption, the voltage is lowered, on a per FU basis, to the point of
causing timing-related errors with a low probability. As long as the cost of detecting and correct-
ing errors is low enough, the voltage level that achieves minimum energy will often come with a
non-zero error rate. If full replication is enabled, timing speculation can be performed with no addi-
tional power overhead. However, if full replication is not enabled, the system must determine if, for
each FU, timing speculation is beneficial. As a failsafe mechanism, we determine whether or not
pipeline register replication and checking are required, using a special circuit path (called a critical
path replica) embedded in each FU [23]. The critical path replica is longer than the critical path of
the unit, allowing detection of impending timing errors. Replication is automatically switched on
and off on the basis of this sensor.

6. RUNTIME CONTROL SYSTEM

FIT targeting and timing speculation are controlled by a runtime optimization mechanism as shown
in Figure 5. Each core pair in the system is first assigned a reliability (FIT) target by the manufacturer
or user. The FIT target can change at runtime if the reliability goals for the system or application

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe
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Figure 5. A high-level overview of the runtime control system. Reliability settings for each core pair change
depending on the reliability targets.

change. Next, the runtime optimization system searches for the replication and timing speculation
settings that achieve the FIT target with minimum energy. This step is solved using an optimiza-
tion algorithm with inputs from a set of machine learning-based models for power and timing
error probability.

6.1. Machine learning-based modeling

Process variation results in different power and delay characteristics for each FU within each
pipeline [23, 24]. These characteristics are difficult to predict and model analytically. To deal with
this challenge, we use ANNs to model the power and timing error probability for all FUs in the sys-
tem. The models are trained using measured data such as temperature, current power consumption
for each pipeline, past error rate, and utilization.

6.1.1. Artificial neural net architecture. To model energy on the basis of temperature, voltage, and
utilization, we use three ANN architectures, shown in Figure 6. An ANN models a function that
takesN inputs and yieldsM outputs. ANNs are typically architected in layers of nodes. In the input
layer, there are N nodes, each corresponding to an input. Likewise, in the output layer, there are
M nodes. A simple ANN with no hidden layers is called an adaptive linear element (ADALINE),
where each output is simply the inner product of the N inputs and a set of N weights, plus a lin-
ear bias. An ADALINE requires M.N C 1/ weights. To model nonlinear functions, we add hidden
layers. The first hidden layer is computed as in the ADALINE, but then each hidden node’s value is
processed through an activation function that adds nonlinearity.

...

...

...

...

Vvec

αvec

Tvec

Vvec

αvec

Tvec

Prvec

V

T
Pwr Pwr Perr

(a) Primary power (b) Shadow power (c) Error probability

Figure 6. The architecture of artificial neural nets used for power and error probability prediction.
(a) Primary power; (b) shadow power; and (c) error probability.
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RUNTIME FAILURE RATE TARGETING FOR ENERGY-EFFICIENT RELIABILITY 799

A popular activation function is the logistic function, P.t/ D 1
.1Ce�t /

, which maps Œ�1,1� to
Œ0, 1�. Additional layers are processed in the same way. Backpropagation is the process of training
the ANN to model the desired function. Our model uses ANNs with the logistic function applied to
the hidden layers, as usual, but applies a linear (P.t/D t ) activation function to the outputs. This is
because the power model needs to produce values greater than 1, and we found the error probability
model to train more quickly and produce more accurate results this way.

Primary power ANNs (Figure 6(a)) predict power consumption for the primary pipeline (Pp).
There are 3 inputs for each FU: voltage, utilization (counted proportion of active cycles), and
temperature (interval average). There are 12 nodes in one hidden layer and one output node.

Shadow power ANNs (Figure 6(b)) predict power consumption for the shadow pipeline (Ps).
There are five inputs for each FU: voltage, utilization, temperature, and binary values indicating
replication (11b for none, 01b for full, and 10b for pipeline register only). There are 10 nodes in one
hidden layer and one output node.

Error probability ANNs (Figure 6(c)) predict raw probability of an error occurring on each cycle
(P.E/). Because each FU has its own error counter, error probability for each is modeled separately.
Each ANN has two inputs: voltage and temperature (interval average). There are four nodes in each
of two hidden layers and one output node.

The number of errors (NE) experienced by a given FU is the product of P.E/, utilization, and
clock cycles in the measurement interval (Cm), rounded to the nearest integer. Recovery penalty
(Rp) is computed from the total number of errors over all FUs, which depends on the error pro-
tection mode of each FU. When full replication is not required, a FU’s shadow pipeline register is
enabled when NE>0. Total energy is .PpCPs/�.1CRp=Cm/.

6.1.2. Artificial neural net training. Artificial neural nets are trained on-line by comparing predic-
tions against measurements and adjusting weights to improve prediction. The training occurs in
two phases. The first phase is initial training immediately after fabrication, where ANN weights
are initialized to generally good values. The ANNs start out with random weights, and a range
of benchmarks is executed for profiling purposes. Benchmarks are executed at all voltage levels,
even those that may incur timing errors every cycle, because correct execution is not required.
Measurements taken include temperatures, error counts, current, and utilization. For each mea-
surement interval, ANNs are forward-evaluated, and when computed outputs disagree with desired
outputs, backpropagation is performed, which adjusts ANN weights to reduce prediction error. This
way, the ANNs come to model the power and delay characteristics of the processor affected by
process variation.

Weights learned in the first training phase should result in reasonable prediction accuracy for a
range of workloads beyond those in the training set. However, it would be good if the ANNs could
adapt over time both to perform increasingly better on new workloads and to adapt to the effects of
circuit aging. Therefore, the second phase of training is on-line training that occurs throughout the
lifetime of the processor. Whenever predictions disagree with measurements, backpropagation can
be performed to adjust the ANNs.

There are several approaches for implementing ANNs in hardware. In [25], a small, fast, low-
power ANN is built from analog circuitry. Other alternatives include simple digital logic as in [15].
We give an estimate for the amount of hardware needed in our case in Section 8.3.

6.2. Runtime optimization system

The energy optimization given a FIT target is performed at regular intervals. Figure 7 shows a
flowchart of the optimization process. The optimizer relies on profiling information collected during
most of the interval, followed by optimization calculations. Profiling and optimization are performed
in parallel to program execution. At the end of a profiling phase, temperatures are measured, and
utilization counters are used as input to the error, power, and FIT models during optimization.
When optimization has completed, new voltages and replication settings are applied. The optimizer
could be implemented in software and run periodically at the end of each adaptation interval or run
continuously in an on-chip programmable controller similar to Foxton [26].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe
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800 T. MILLER, N. SURAPANENI AND R. TEODORESCU
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Figure 7. Runtime optimization system. FIT, failure in time; ANN, artificial neural net; ED, energy delay
product.

Figure 8. Hill-climbing search for optimal voltages. ED, energy delay product; FU, functional unit.

For every interval, our objective is to find a set of configuration settings that (i) minimize energy
or the energy delay product; (ii) prevent timing errors; and (iii) meet a specified FIT target. The
number of combinations of voltage and replication settings to consider is exponential, and interac-
tions between settings make it impossible to compose local optimizations to find a global optimum.
We therefore employ a hill-climbing algorithm (Figure 8) to search the voltage space and an error
analysis function to compute replication settings. The algorithm starts with maximum voltages for
all FUs and lowers them one step at a time, checking for errors, and computing energy delay product
(ED). Voltages are lowered until minimum ED is found.

Given a vector of voltages, the error analyzer computes replication settings that meet the FIT
target and prevent timing errors. If requirements can be met, the analysis yields a set of repli-
cation settings (none, full, or partial for each FU). Otherwise, it reports failure to invalidate
this configuration.

To meet a FIT target, the error analyzer identifies a set of FUs for which full redundancy must
be enabled to get as close as possible to the FIT target without exceeding it. To do this, we apply a
greedy algorithm that we call best fit FIT first. A FU is selected whose estimated FIT rate is closest
to the difference between the target FIT and the current estimated total. Dynamic FIT rate for a
FU is a function of unit-specific AVF, raw soft error rate, utilization (for logic) or occupancy (for
memory), and voltage. AVF is determined through simulation or testing. Raw soft error rate is a
user-provided environmental factor. Utilization and occupancy are measured at runtime. Voltage is

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe
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RUNTIME FAILURE RATE TARGETING FOR ENERGY-EFFICIENT RELIABILITY 801

selected by the optimizer. Each FU’s AVF is not substantially affected by variation, so a simple
analytical model is used to estimate FIT. Enabling full redundancy effectively reduces a FU’s FIT
to zero, yielding a reduced estimated total FIT. If the FIT target is not met, another FU is selected to
be replicated. This is repeated until the FIT target is met.

For each remaining FU that has not been selected for full replication, the error analyzer selects
partial (pipeline register) replication if it is vulnerable to timing errors at its current voltage. ANNs
are used to predict power and probability of error. The optimization yields the voltages for which
ED was minimum, along with replication settings.

7. EVALUATION METHODOLOGY

We use a modified version of the SESC cycle-accurate execution-driven simulator [27] to model a
system similar to the Intel Core 2 Duo modified to support redundant execution. Table I summarizes
the architecture configuration.

7.1. Variation model

Chip manufacturers seldom release measurements of process variation for current or future
technologies. As a result, we rely on statistical models of variation (e.g., [23,28–30]) driven by val-
ues projected by the ITRS [1]. In this paper, we use the VARIUS model [23, 30] to model variation
in threshold voltage (Vth) and effective gate length (Leff).

To model systematic variation, the chip is divided into a grid of points. Each grid point is given
one value of the systematic component of the parameter, assumed to have a normal distribution with
�D 0 and standard deviation �sys. Systematic variation is also characterized by a spatial correlation
so that adjacent areas on a chip have roughly the same systematic component values. The spatial
correlation between two points Ex and Ey is expressed as �.r/, where r D jEx � Eyj. To determine how
�.r/ changes from �.0/ D 1 to �.1/ D 0 as r increases, the spherical function is used. The dis-
tance, �, at which the function converges to zero is when there is no significant correlation between
two transistors.

Random variation is modeled with a normal distribution with �D 0 and standard deviation �ran.
Because the random and systematic components are normally distributed and independent, their

effects are additive, and the total standard deviation � is
q
�2ranC �

2
sys. In the model, Vth and Leff

have different values of � .
Table I shows some of the process parameters used. Each individual experiment uses a batch of

100 chips that have a different Vth (and Leff) map generated with the same �, � , and �. To generate
each map, we use the geoR statistical package [31] of R [32]. Resolution is 1/4M points per chip.

Table I. Summary of the architecture configuration.

Architecture: Core 2 Duo-like processor
Technology: 32 nm, 4 GHz (nominal)
Core fetch/issue/commit width: 3/5/3
Register file size: 40 entry; Reservation stations: 20
L1 caches: 2-way 16 K each; 3-cycle access
Shared L2: 8-way 2 MB; 7 cycle access
Branch prediction: 4 K-entry BTB, 12-cycle penalty

Die size: 195 mm2; VDD: 0.6-1 V (default is 1 V)
Number of dies per experiment: 100
Vth: �: 250 mV at 60ı

�=�: 0.03–0.12 (default is 0.12)
� (fraction of chip’s width): 0.5

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:790–807
DOI: 10.1002/cpe

 15320634, 2013, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.2898 by O

hio State U
niversity O

hio Sta, W
iley O

nline L
ibrary on [13/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



802 T. MILLER, N. SURAPANENI AND R. TEODORESCU

7.2. Power and temperature models

To estimate power, we scale results given by popular tools using technology projections from ITRS
[1]. We use SESC [27] to estimate dynamic power at a reference technology and frequency. In addi-
tion, we use the model from [30] to estimate leakage power for same technology. We use HotSpot
[33] to estimate on-chip temperatures.

7.3. Timing and soft error models

We use the timing error model developed in [30]. The model takes into account process parame-
ters such as Vth, Leff as well as floorplan layout and operating conditions such as supply voltage
and temperature. It considers the error rate in logic structures, SRAM structures, and hybrids of
both, with both systematic and random variations. The model has been validated with empirical
data [34]. With this, we estimate the timing error probability for each FU of each chip at a range of
supply voltages.

For soft errors, we use the approach in SoftArch [35]. We determine the raw soft error rate for
50-nm technology from [36]. FIT values for latch and combinational logic chain were also extracted
from [36]. We scale that to 32 nm using the predictions from [37]. On the basis of the transistor
count for the Core 2 Duo floorplan, we estimate the number of transistors in latches and combi-
national logic in each FU. On the basis of that count and the mix of logic chains and latches, we
determine FIT values for each FU. To model AVF, we use an approach similar to [21]. For logic-
dominated FUs, we measure activity for those units and scale the expected FIT accordingly. For
memory-dominated FUs, we consider both activity and occupancy.

7.4. Benchmarks

We use benchmarks from the SPEC CPU2000 suite (bzip2, crafty, gap, gzip, mcf, parser, twolf,
vortex, applu, apsi, art, equake, mgrid, and swim). The simulation points present in SESC are used
to run the most representative phases of each application with the reference input set.

8. EVALUATION

In this section, we show the effects of FIT targeting and timing speculation on energy reduction. We
also show an evaluation of the area, power, and timing overheads of the proposed architecture.

We begin by looking at the potential for energy savings from aggressively lowering the supply
voltage of selected FUs while tolerating timing errors. Figure 9 shows energy consumption for a
typical FU protected only against timing errors while running a section of a benchmark at differ-
ent supply voltages at the same clock rate. The ideal energy line shows how energy would scale if
we could lower voltage with no impact on timing. As voltage is lowered, total power consumption
decreases, resulting in lower energy. When the voltage drops below the safe margin, replication is
enabled to detect and correct timing errors.
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Figure 9. Energy as a function of voltage and functional unit with timing speculation only.
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RUNTIME FAILURE RATE TARGETING FOR ENERGY-EFFICIENT RELIABILITY 803

The replication and recovery energy line accounts for the increase in power consumption due to
replication (for this unit, enabled around 0.84 V) and the time penalty incurred during error recov-
ery. The penalty for error recovery increases sharply as the voltage is lowered beyond 0.7 V. Real
energy includes both ideal and penalty energies. We notice a sharp increase in energy as replication
is enabled, followed by a continued decrease with voltage as long as the error rate is tolerable. The
lowest energy point occurs around 0.73 V.

Figure 10 shows the energy consumption versus voltage for units with full replication. Here, there
is no discontinuity because replication is always enabled.

The voltage level with the lowest energy depends on a several factors, including the variation
profile of the FU and its sensitivity to timing errors. Ideal voltage is also dependent on the computed
workload. Thus, supply voltage for each FU can change significantly over time as utilization and
temperature vary.

8.1. Energy reduction with failure in time targeting

We evaluate the energy reduction from FIT targeting and timing speculation compared with a con-
figuration that uses full replication with no timing speculation (StaticDMR). We also compare with a
lower overhead DMR with replication at core level that we refer to as SimpleDMR. The SimpleDMR
does not have the overhead of routing and fine-grain checking needed for fine-grain redundancy,
allowing it to run at a 10% faster clock rate. We use ED, a common metric to evaluate energy
efficiency that accounts for both energy and execution time.

Figure 11 shows the reduction in ED relative to StaticDMR for all benchmarks, averaged across
all dies, at FIT targets ranging from zero to unlimited. The higher the FIT rate we are willing to
tolerate, the lower the energy delay relative to StaticDMR. For a high FIT (above 50, corresponding
to MTBF of about 2�103 years), little replication is needed for most benchmarks and energy-delay
reduction approaches 60%. As the FIT target is lowered, replication is enabled more often, and
energy savings are less. A FIT target of 11.4 (MTBF D 105 years) yields average energy savings
of about 50%. For very low FIT rate of 1.1 � 1.4, savings are around 30%. Note that even in the
extreme case in which no errors are allowed (FIT target is zero), the energy reduction from timing
speculation alone is 24% compared with StaticDMR.
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Figure 10. Energy as a function of voltage, for a functional unit with full replication.
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Figure 11. Energy delay product (ED) savings for different failure in time (FIT) targets. Different
applications require different amounts of energy to achieve the same FIT target. DMR.
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804 T. MILLER, N. SURAPANENI AND R. TEODORESCU

Compared with our baseline StaticDMR, the SimpleDMR has about 12% lower ED mainly due
to the faster clock rate. Dynamic adaptation, however, more than makes up for the increase in cycle
time, resulting in 10% lower ED than SimpleDMR even in the conservative case of zero FIT.

Some of the ED savings come from selective enabling of FU replication. Figure 12 shows the
average number of FUs replicated for each benchmark at the various target FIT rates. For a FIT
target of 11.4, replication is enabled for an average of three FUs across benchmarks. Replication
varies significantly across benchmarks. For instance, for a FIT of 2.3, there is significant variation
in average replication across benchmarks from 10 for vortex to 4 for art. This is due to variation
in utilization and occupancy of various FUs. This shows the importance of dynamic adaptation of
redundancy settings to match not only the FIT target but also the behavior of the application.

8.2. Artificial neural net prediction accuracy

An important factor in the performance of the energy optimization algorithm is the accuracy of the
ANN predictions. Figures 13 and 14 illustrate prediction accuracy for the shadow power ANN as a
function of the number of hidden nodes, across all benchmarks. Figure 13 shows the average pre-
diction error over the entire test set, whereas Figure 14 shows the worst case prediction error. The
shadow power ANN models a nonlinear function, so there is a large improvement when going from
no hidden nodes to having at least one. Notice, however, that there is little improvement when going
from four to eight hidden nodes. Increasing the number of hidden nodes to 12 shows another sig-
nificant improvement because there is now one hidden node for each functional unit, which allows
the ANN to better model the behavior of each unit. With 12 hidden nodes, the average ANN pre-
diction error is less than 0.5%, and the maximum prediction error is less than 5%. We also conduct
the energy reduction experiments with a perfect predictor instead of the ANNs. We found that the
average energy delay for the experiments with the ANN comes within 2% of that achieved with a
perfect predictor.

8.3. Overheads

8.3.1. Power, area and timing. The proposed architecture introduces some timing, power, and area
overheads. To estimate it, we synthesized the Open Graphics Project HQ microcontroller [38] for
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Figure 12. Average number of replicated functional units per benchmark for multiple failure in time (FIT)
targets. DMR.
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versus number of hidden nodes.
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Figure 14. Worst-case prediction error (% deviation from real power) for shadow power artificial neural net
versus number of hidden nodes.

Xilinx Spartan 3 FPGA. The synthesis was performed with and without routing and checker logic
to determine the additional area consumed. On the basis of the synthesis results, verified against
related work [11], we estimated area overhead for parts of our design as follows: 2% for pipeline
registers, per pipeline; 2% for routing, per pipeline; and 2% for the shared checker. Therefore, the
additional die area powered on for timing speculation is up to 6%. In the experiments, we conserva-
tively assumed an overhead of 10%. The cycle time overhead is incurred because of the presence of
multiplexing before pipeline registers and routing between pipelines. To estimate this impact, syn-
thesis was performed with and without routing logic. Depending on target die size, cycle time impact
ranged between 10 and 15%. All of these overheads are accounted for in the energy evaluation.

8.3.2. Runtime optimization overhead. The optimization algorithm described in Section 6.2
requires fewer than 1300 queries of the error analysis function, which translates into under 1300
forward evaluations of each ANN and a small amount of computation for the dynamic FIT rate. We
use an optimization interval of 1 ms. We profile over one interval and then perform the search for
the best voltages to use over the next interval. To share ANN hardware across an 8-core system, a
decision must be made in 0.125 ms, or 500 K cycles at 4 GHz. There are less than 1500 weights
for all ANNs. Thus, there are less than 2 million products and sums to be computed. The complete
optimization can be performed in the given time using four single-precision multipliers, four adders,
and one logistic function.

9. CONCLUSION

This paper proposes a new approach to microprocessor reliability management that achieves reliable
and energy-efficient operation by dynamically adapting the amount of error protection to the charac-
teristics of individual chips (to account for the effects of process variation), their runtime behavior
(to account for workload variability), and the desired level of error resiliency. The ability of the
system to dynamically adapt allows it to operate reliably within defined targets without wasting
energy on high safety margins or over-provisioning. We also show that a machine learning-based
dynamic control mechanism performs the runtime optimization required by our system accurately
and quickly.
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