
Booster: Reactive Core Acceleration for Mitigating the Effects of Process
Variation and Application Imbalance in Low-Voltage Chips∗

Timothy N. Miller, Xiang Pan, Renji Thomas, Naser Sedaghati, Radu Teodorescu
Department of Computer Science and Engineering

The Ohio State University
{millerti, panxi, thomasr, sedaghat, teodores}@cse.ohio-state.edu

http://arch.cse.ohio-state.edu

Abstract

Lowering supply voltage is one of the most effective
techniques for reducing microprocessor power consump-
tion. Unfortunately, at low voltages, chips are very sen-
sitive to process variation, which can lead to large dif-
ferences in the maximum frequency achieved by individual
cores. This paper presents Booster, a simple, low-overhead
framework for dynamically rebalancing performance het-
erogeneity caused by process variation and application im-
balance. The Booster CMP includes two power supply rails
set at two very low but different voltages. Each core can
be dynamically assigned to either of the two rails using a
gating circuit. This allows cores to quickly switch between
two different frequencies. An on-chip governor controls the
timing of the switching and the time spent on each rail.
The governor manages a “boost budget” that dictates how
many cores can be sped up (depending on the power con-
straints) at any given time. We present two implementations
of Booster: Booster VAR, which virtually eliminates the ef-
fects of core-to-core frequency variation in near-threshold
CMPs, and Booster SYNC, which additionally reduces the
effects of imbalance in multithreaded applications. Evalua-
tion using PARSEC and SPLASH2 benchmarks running on
a simulated 32-core system shows an average performance
improvement of 11% for Booster VAR and 23% for Booster
SYNC.

1. Introduction
Current industry trends point to a future in which chip

multiprocessors (CMPs) will scale to hundreds of cores.
Unfortunately, hard limits on power consumption are threat-
ening to limit the performance of future chips. Today’s
high-end microprocessors are already reaching their ther-

∗This work was supported in part by the National Science Foundation
under grant CCF-1117799 and an allocation of computing time from the
Ohio Supercomputer Center.

mal design limits [15, 28] and have to scale down fre-
quency under high utilization. The International Technol-
ogy Roadmap for Semiconductors (ITRS) [16] has recog-
nized for a while that power reduction in future technology
generations will become increasingly difficult. If current in-
tegration trends continue, chips could see a 10-fold increase
in power density by the time 11nm technology is in produc-
tion. This will not only limit chip frequency but will also
restrict the number of cores that can be powered on simul-
taneously [37]. The only way to ensure continued scaling
and performance growth is to develop solutions that dramat-
ically increase computational energy efficiency.

A very effective approach to improving the energy ef-
ficiency of a microprocessor is to lower its supply voltage
(Vdd) to very close to the transistor’s threshold voltage (Vth),
into the so-called near-threshold (NT) region [5, 8, 26, 29].
This is significantly lower than what is used in standard dy-
namic voltage and frequency scaling (DVFS), resulting in
aggressive reductions in power consumption (up to 100×)
with about a 10× loss in maximum frequency. The very low
power consumption allows many more cores to be powered
on than in a CMP at nominal Vdd (albeit at much lower fre-
quency). Even with the lower frequency, CMPs running in
near-threshold can achieve significant improvements in en-
ergy efficiency, especially for highly parallel workloads. A
recent prototype of a low-voltage chip from Intel Corp. is
showing very promising results [38].

Unfortunately, near-threshold chips are very sensitive to
process variation. Variation is caused by extreme chal-
lenges with manufacturing chips with very small feature
sizes. Variation affects crucial transistor parameters such
as threshold voltage (Vth) and effective gate length (Leff)
leading to heterogeneity in transistor delay and power con-
sumption. In a large CMP, variation can lead to large dif-
ferences in the maximum frequency achieved by individual
cores [14, 36]. Low-voltage operation greatly exacerbates
these effects because of the much smaller gap between Vdd
and Vth. For 22nm technology, variation at near-threshold

978-1-4673-0826-7/12/$26.00 ©2011 IEEE

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

voltages can easily increase by an order of magnitude or
more compared to nominal voltage [30].

One solution for dealing with frequency variation is to
constrain the CMP to run at the frequency of the slowest
core. This eliminates performance heterogeneity but also
severely lowers performance, especially when frequency
variation is very high [30]. Moreover, power is wasted on
the faster cores, because they could achieve the same per-
formance at a lower voltage. Another option is to allow
each core to run at the maximum frequency it can achieve,
essentially turning a CMP that is homogeneous by design
into a CMP with heterogenous and unpredictable perfor-
mance. Previous work has used thread scheduling and other
approaches that exploit workload imbalance [13, 31, 35, 36]
to reduce the impact of heterogeneity on CMP performance.
These techniques are effective for single-threaded applica-
tions or multiprogrammed workloads. However, they still
suffer from unpredictable performance when processor het-
erogeneity is variation-induced. Moreover, these techniques
are less effective when applied to multithreaded applica-
tions.

This paper presents Booster, a simple, low-overhead
framework for dynamically re-balancing performance het-
erogeneity caused by process variation or application im-
balance. The Booster CMP includes two power supply rails
set at two very low but different voltages. Each core in
the CMP can be dynamically assigned to either of the two
power rails using a gating circuit [17]. This allows each
core to rapidly switch between two different maximum fre-
quencies. An on-chip governor determines when individual
cores are switched from one rail to the other and how much
time they spend on each rail. A “boost budget” restricts
how many cores can be assigned to the high voltage rail at
the same time, subject to power constraints.

We present two implementations of Booster: Booster
VAR, which virtually eliminates the effects of core-to-core
frequency variation, and Booster SYNC, which reduces the
effects of imbalance in multithreaded applications.

With Booster VAR the governor maintains an average
per-core frequency that is the same across all cores in the
CMP. To achieve this, the governor schedules cores that are
inherently slow to spend more time on the high voltage rail
while those that are fast will spend more time on the low
voltage rail. A schedule is chosen such that frequencies av-
erage to the same value over a finite interval. The result is
a CMP that achieves performance homogeneity much more
efficiently than is possible with a single supply voltage.

The goal of Booster SYNC is to reduce the effects of
workload imbalance that exists in many multithreaded ap-
plications. This imbalance is caused by application char-
acteristics, such as uneven distribution of work between
threads, or runtime events like cache misses, which can
cause non-uniform delays. Unbalanced applications lead

to inefficient resource utilization because fast threads end
up idling at synchronization points, waisting power [1, 23].
Booster SYNC addresses this imbalance with a voltage rail
assignment schedule that favors cores running high-priority
threads. These cores are given more time on the high-
voltage rail at the expense of the cores running low-priority
threads. Booster SYNC uses hints provided by synchroniza-
tion libraries to determine which cores should be boosted.
Unlike in previous work that addressed this problem [1, 23],
the goal is not to save power by slowing down non-critical
threads but to improve performance by reducing workload
imbalance.

Evaluation of the Booster system on SPLASH2 and
PARSEC benchmarks running on a simulated 32-core sys-
tem shows that Booster VAR reduces execution time by
11%, on average, over a baseline heterogeneous CMP with
the same average frequency. Compared to the same base-
line, Booster SYNC reduces runtime by 19% and reduces
the energy delay product by 23%.

This paper makes the following main contributions:

• The first solution for virtually eliminating core-to-core
frequency variation in low-voltage CMPs.
• A novel solution for speeding up unbalanced parallel

workloads.
• A hardware mechanism that uses synchronization li-

brary hints to track thread and core relative priority.

This paper is organized as follows: Section 2 presents
the proposed Booster framework. Sections 3 and 4 describe
the Booster VAR and Booster SYNC implementations. Sec-
tions 5 and 6 discuss the methodology and results of our
evaluation. Section 7 discusses related work and Section 8
concludes.

2. The Booster Framework

The Booster framework relies on the CMP’s ability to
frequently change the voltage and frequency of individ-
ual cores. To ensure reliable operation, execution must be
stopped while the voltage is in transition and the clock locks
on the new frequency. To keep the performance overhead
low, this transition must be very fast. Standard DVFS is
generally driven by off-chip voltage regulators, which re-
act slowly, requiring dozens of microseconds per transition.
On-chip regulators could allow faster switching and poten-
tially core-level DVFS control and have shown promising
results in prototypes [18]. They are, however, costly to im-
plement since one regulator per core is required if core-
level control is needed. They also suffer from low effi-
ciency because they run at much higher frequencies than
their off-chip counterparts. Even the fastest on-chip reg-
ulators require hundreds to thousands of cycles to change
voltage [18, 19].

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

Core0

Core1

CoreN-1

CoreN

Voltage
Regulator

A

...

Booster
Governor

Near-threshold CMP

Voltage
Regulator

B

PG

PG

PG

PG

Power supply lines

Control lines

CM

CM

CM

CM

PLL

PG Power gates

CM Clock multipliers

Figure 1. Overview of the Booster framework.

2.1. Core-Level Fast Voltage Switching

We use a different approach to control voltage and fre-
quency levels at core granularity. In the Booster framework
all cores are supplied with two power rails set at two differ-
ent voltages. At near-threshold even small changes in Vdd
have a significant effect on frequency. Thus, even a small
difference (100-200mV) between the two rails gives cores
a significant frequency boost (400-800MHz). Two exter-
nal voltage regulators are required to independently regulate
power supply to the two rails as shown in Figure 1. To keep
the overhead of the additional regulator low, the sizes of
the off-chip capacitors can be reduced significantly because
each regulator handles a smaller current load in the new de-
sign. Each core in the CMP can be dynamically assigned to
either of the two power rails using gating circuits [17, 22]
that allow very fast transition between the two voltage lev-
els. Within each core, only a single power distribution net-
work is needed, leaving the core layout unchanged.

To measure how quickly Booster can change voltage
rails, we conducted SPICE simulations of a circuit that uses
RLC blocks to represent the resistance, capacitance and in-
ductance of processor cores. The simulated circuit is shown
in Figure 2(a). The RLC data represents Nehalem proces-
sors and is taken from [22]. This simple RLC model does
not capture all effects of the voltage switch on the power
distribution network, but it offers a good estimate of the
voltage transition time. We simulate the transition of a sin-
gle core between two voltage lines: low Vdd at 400mV and
high Vdd at 600mV. A load equivalent to 15 cores is on
the high Vdd line and one equivalent to 15 cores is on the
low Vdd line at the time of the transition. Two power gates
(M1 and M2), implemented with large PMOS transistors,
are used to connect the test core to either the 600mV or the
400mV line. The gates were sized to handle the maximum
















 































 




















(a)

-1n 0 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n
0.35
0.40
0.45
0.50
0.55
0.60

start transition end transition

C
or

e
V

ol
ta

ge
 (V

)

time (s)

-1n 0 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n
0.35
0.40
0.45
0.50
0.55
0.60

start transition

C
or

e
V

ol
ta

ge
 (V

)

end transition

(b)

Figure 2. (a) Diagram of circuit used to test the speed of power
rail switching for 1 core in a 32 core CMP. (b) Voltage response to
switching power gates; control input transition starts at time=0.

current that can be drawn by each core. Both transistors
were sized to have very low on-channel resistance (1.8 mil-
liohms) to minimize the voltage drop across them.

Figure 2(b) shows the Vdd change at the input of the
core in transition, when the core switches from high volt-
age to low (top graph) and from low voltage to high (bottom
graph). During a transition the core is clock-gated to ensure
reliable operation. As the graphs show, the transition from
600mV to 400mV takes about 7ns. Switching from 400mV
to 600mV takes closer to 9ns, which is 9 cycles at 1GHz, the
average frequency at which the Booster CMP runs. In our
experiments we conservatively model a 10 cycle transition
time. A similar voltage change takes tens of microseconds
if performed by an external voltage regulator.

This experiment shows that changing power rails adds
very little time overhead even if performed frequently.
Power gates do introduce an area overhead to the CMP de-
sign. Per core, two gates have an area equivalent to about
6K transistors. For 32 cores this adds an overhead of ∼192K
transistors, or less than 0.02% of a billion transistor chip.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

2.2. Core-Level Fast Frequency Switching

Booster also requires core-level control over frequency.
We assume a clock distribution and regulation system sim-
ilar to the one used in the Intel Nehalem family [21]. Ne-
halem uses a central PLL to supply multiple phase-aligned
reference frequencies, and distributed PLLs generate the
clock signals for each core. This design allows core fre-
quencies to be changed very quickly with 1-2 cycles of over-
head when the clock has to be stopped. Booster requires
a larger number of discrete frequencies than Nehalem be-
cause it allows each core to run at its maximum frequency
(in steps of 25MHz in our implementation). In order to
obtain a larger number of discrete frequencies, a reference
signal generated by a central PLL is supplied to each core.
Each core uses a clock multiplier [27, 33], which gener-
ates multiples of the base frequency. These multipliers have
been shown in prototypes [33] to deliver frequency changes
with overheads (lock times) of less than two cycles. The
“high” and “low” frequencies are encoded locally on each
core as multiplication factors. They are used to change the
core frequency when directed by the Booster governor.

2.3. The Booster Governor

Cores are assigned dynamically to one of the two supply
voltages according to a schedule controlled by the Booster
governor. The governor is an on-chip programmable mi-
crocontroller similar to those used to manage power in the
Intel Itanium [28] and Core i7 [15]. The governor can im-
plement a range of boosting algorithms, depending on the
goals for the system, such as mitigating frequency variation
or reducing imbalance in parallel applications.

3. Booster VAR
The goal of Booster VAR is to maintain the same average

per-core frequency across all cores in a CMP. To achieve
this, the governor schedules cores that are inherently “slow”
to spend more time on the higher Vdd line, improving their
average frequency. Similarly, “fast” cores are assigned to
spend more time on the low rail, saving power. The result
is a heterogeneous CMP with homogeneous performance.
The governor manages a “boost budget” that ensures chip
power constraints (such as TDP) are not exceeded. For sim-
plicity the “boost budget” is expressed in terms of maxi-
mum numbers of cores Nb that can be sped up at any given
time. A boost schedule is chosen such that the average fre-
quency for all the cores is the same over a predefined “boost
interval.”

3.1. VAR Boosting Algorithm

Booster VAR can be programmed to maintain a target
CMP frequency from a range of possible frequencies. For
instance, the target frequency can be set to the frequency

achieved by the fastest core while on the low voltage rail.
On each voltage rail, each core is set to run at its own
best frequency, which is an integer multiple of the refer-
ence frequency Fr (e.g. multiples of 25MHz). Because of
high variation, the maximum frequencies vary significantly
from core to core. To keep track of each core’s “execution
progress” the Booster governor uses a set of counters. Each
core’s progress is represented by a value proportional to the
number of cycles executed. Let MCi represent one of the
two clock multipliers (one for each voltage rail) selected
for core i at the current time. Let PRi represent the current
progress metric of core i; in this case, number of cycles. To
track progress of all cores, the governor will, at a frequency
of Fr, increment PRi by MCi for each i. For instance, if
the reference clock is 25MHz, and core 3 is currently run-
ning at a frequency of 300MHz, then every 40 nanoseconds,
the governor will increment PR3 by 12. (The counters are
periodically reset to avoid overflow.)

The governor includes a pace setter counter that keeps
track of the desired target frequency. The governor’s job is
to maintain the core progress counters as close as possible
to the pace setter. At the end of each “boost interval,” the
governor selects the cores that have fallen behind the pace
setter and boosts them during the next interval, with the re-
striction that no more than Nb cores can be boosted.

3.2. System Calibration

Booster VAR requires some chip-specific information
that is collected post-manufacturing during the binning pro-
cesses. The maximum frequencies of each core at the low
and high voltages are determined through the regular bin-
ning process. This involves ramping up chip frequency
by integer increments of the base frequency until all cores
have exceeded their frequency limit. The high and low fre-
quency multipliers for each core are recorded in ROM and
are loaded into the governor during processor initialization.

4. Booster SYNC
The Booster framework can be used to compensate for

other sources of performance variability such as work im-
balance in shared-memory multithreaded applications. Par-
allel applications often have uneven workload distributions
caused by algorithmic asymmetry, serial sections or unpre-
dictable events such as cache misses [1, 3, 23]. This imbal-
ance results in periods of little or no activity on some cores.
To address application imbalance and improve execution ef-
ficiency, we developed Booster SYNC, which builds on the
Booster framework.

4.1. Addressing Imbalance in Parallel Workloads

Booster SYNC reduces imbalance of multithreaded ap-
plications by favoring higher priority threads in the alloca-
tion of the “boost budget.” Booster SYNC’s ability to very

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

quickly change the power state of each core allows it to
react to changes in thread priority caused by synchroniza-
tion events. Booster SYNC focuses on the four main syn-
chronization primitives that are most common in commer-
cial and scientific multithreaded workloads: locks, barriers,
condition waits, and starting and stopping threads.

Barrier-based workloads divide up work among threads,
execute parallel sections, and then meet again when that
work is completed to synchronize and redistribute work.
The primary inefficiencies of barrier-based workloads are
imbalances in parallel sections, where some threads run
longer than others, and sequential sections that cannot be
parallelized. Speeding up threads that are still doing work
while slowing down those blocked at the barrier should re-
duce workload imbalance, speed up the application and im-
prove its efficiency.

Locks are used to acquire exclusive access to shared re-
sources, and they are also often used to synchronize work
and communicate across threads. Locks introduce two main
inefficiencies. The first is caused by resource contention,
which can stall execution on multiple threads. Another po-
tential inefficiency occurs when locks are used for synchro-
nization. For instance, locks are sometimes used to imple-
ment barrier-like functionality, with the same inefficiency
issues as barrier. And locks are also often used to serial-
ize thread execution. Reducing time spent by threads in
the lock’s “critical section” can potentially reduce both con-
tention time and time spent in serialized execution.

Condition waits are a form of explicit inter-process com-
munication, where a thread blocks until some other thread
signals for it to continue executing. Among other things,
conditions are often used in producer-consumer algorithms,
where the consumer blocks until the producer signals that
there is input available. To improve performance, blocked
threads can give up their boost budget to speed up active
cores.

Finally, some workloads dynamically spawn and termi-
nate worker tasks. A core that is disabled because it has
no task assigned is essentially the same as a core that is
blocked, although it is possible to save slightly more power
by turning power off completely. The boost budget of inac-
tive cores can be redistributed to those cores that have work
to do.

Unlike prior work that minimizes power for unbalanced
workloads [1, 3, 23], our objective is to minimize runtime
while remaining power-efficient. Also, unlike prior work
we do not rely on criticality predictors to identify high-
priority threads. Prediction would be too imprecise for lock
and condition based workloads. Instead, Booster SYNC is a
purely reactive system that uses hints provided by synchro-
nization libraries and is managed by hardware to determine
which cores are blocked and which ones are active.

Thread Progress Thread Priority State

Thread spawned normal
Thread terminated none (core off)
Thread reaches barrier (not last) blocked
Last thread reaches barrier normal (all threads)
Lock acquire critical
Lock release normal
Block on lock blocked
Block on condition blocked
Condition signal normal
Condition broadcast normal (all threads)

Table 1. Thread priority states set by synchronization events.

4.2. Hardware-based Priority Management

Booster SYNC relies on hints from synchronization prim-
itives to determine the states of all threads currently run-
ning. We define the following priority states for a thread:
blocked, normal, and critical. When a thread is first
spawned, it is set to normal. If a thread reaches a barrier,
and is not the last one, its state is set to blocked. If it is the
last thread to arrive at the barrier, it sets the state of all the
other threads to normal. Conditions work in a similar way,
so if a thread is blocked on a condition, its state is blocked.
Threads that receive the condition signal/broadcast are set
to normal. When a thread attempts to acquire a lock, there
are two possible state transitions: if the thread acquires the
lock, its state is set to critical, otherwise it is set to blocked.
It is assumed that a critical section is likely to result in
threads competing for a shared resource. Speeding up crit-
ical threads should reduce contention time, thus speeding
up the whole application. Finally, when a thread terminates
while there are no waiting threads in the run queue, a core
will become idle and may be switched off. Thread priority
states and transitions are summarized in Table 1.

The Booster governor keeps track of thread priorities.
The priority state of each thread is stored as a 2-bit value
in a Thread Priority Table (TPT) that is memory-mapped
and accessible at process level. Priority tables are part of
the virtual address space of each process, which allows any
thread to change its own priority or the priorities of other
threads belonging to the same process. Frequently updated
TPT entries are cached in the local L1 data caches of each
CPU for quick access.

The governor maintains TPT entries coherent with a
Core Priority Table (CPT), a centralized hardware table
managed by the Booster governor and the OS. Note that
multiple independent parallel processes can run on the CMP
at the same time. The CPT is used as a cache for the TPT en-
tries corresponding to the threads that are currently sched-
uled on the CMP, regardless of which process they belong
to, as shown in Figure 3. Each CPT entry is tagged with the
physical address of the corresponding TPT entry and acts
as a direct-mapped cache with as many entries as there are

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

1

3

2

1

1

1

1

1

1

2

1

3

...

...

Process 1

Process 2

Thread 1

Thread 2

Thread 3

Thread 1

Thread 2

Thread 3

Core Priority
Table (CPT)

(Core 0)

...

0 (Core N)

0xAAA76...80

Thread Priority
Table (TPT)

...

...

...

...

...

...

"Tag"
(TPT Entry

Phys. Addr.)

Process address spaces Hardware

0

1

2

Off

3

Normal

Blocked

Critical

Core Priority
Legend

Figure 3. Thread Priority Tables are mapped into the process ad-
dress space and cached in the Core Priority Table.

processors in the system. Each entry contains the priority
value for the thread running on the corresponding core. The
CPT entries are maintained coherent with local copies from
each core through the standard cache coherence protocol.

4.3. SYNC Boosting Algorithm

Booster SYNC requires some minor changes to the boost-
ing algorithm used in Booster VAR (Section 3.1). Just like
in Booster VAR, the governor maintains a list of active cores
sorted by core progress. In addition, Booster SYNC moves
all critical threads to the head of the list. Given a “boost
budget” ofNb cores Booster SYNC assigns the topNb cores
in the list to the high voltage rail. Cores that are in the
blocked state are removed from the boost list and set to a
low power mode (clock gated, on the low Vdd). Booster
SYNC will accelerate only critical and normal threads. If
many threads are blocked, fewer than Nb may be boosted.

Booster SYNC uses the same core progress counters and
metric as Booster VAR. However, progress of cores assigned
blocked threads is accounted for differently. Blocked cores
are removed from the boost list and their progress coun-
ters are no longer incremented by the governor. As a re-
sult, the progress counters of cores emerging from blocked
states will indicate that they have fallen behind other cores.
This would cause Booster to assign an excessive amount
of boost to the previously-blocked threads. To avoid this
issue, whenever a core changes state from blocked to nor-
mal or critical, its progress counter is set to the maximum
counter value of all other active cores. This will place the
core towards the bottom of the boost list.

4.4. Library and Operating System Support

Booster SYNC does not require special instrumentation
of application software or special CPU instructions. In-
stead, it relies on modified versions of synchronization li-
braries that are typically supplied with the operating sys-
tem, such as OpenMP and pthreads. To provide priority

hints to the hardware, libraries write to entries in the TPT.
When a running thread updates a local copy of a TPT entry,
cache coherence will ensure that the CPT is also updated.
Note that hints could be implemented in the kernel instead
of the synchronization library, but the kernel is typically not
informed as to which threads are holding locks (critical),
limiting available TPT states to normal and blocked.

During initialization, a process makes system calls to in-
form the OS as to where its table entries are virtually lo-
cated; the OS translates these into physical addresses and
tracks this as part of the process and thread contexts. Asso-
ciation of TPT and CPT entries is also handled by the OS.
On a context switch, the OS updates the CPT tag for each
core with the physical address of the TPT entry of the cor-
responding thread. The OS also guarantees protection and
isolation for CPT entries belonging to different processes.

4.5. Other Workload Rebalancing Solutions

In our implementation, Booster uses cycle count as a
metric of core progress. This allows Booster VAR to en-
sure that all cores execute the same number of cycles over a
finite time interval. However, by altering the way we track
core progress, we can use the Booster framework to support
other solutions for addressing workload imbalance. For in-
stance, Bhattacharjee and Martonosi [1] observed that for
instruction-count-balanced workloads, imbalance is caused
by divergent L2 miss rates. Booster could reduce this im-
balance by using retired instruction count as the execution
progress metric. This will, in effect, speed up threads that
suffer more long latency cache misses and help them keep
up with the rest of the threads. Another alternative progress
metric might be explicit markers inserted by the program-
mer or compiler into the application, as in [3]. We leave
detailed exploration of these approaches to future work.

5. Evaluation Methodology

5.1. Architectural Simulation Setup

We used the SESC [32] simulator to model a 32-core
CMP. Each core is a dual-issue out-of-order architecture.
The Linux Threads library was ported to SESC in order
to run the PARSEC benchmarks that require the pthreads
library. We ran the PARSEC benchmarks (blackscholes,
bodytrack, fluidanimate, swaptions, dedup, and streamclus-
ter) and SPLASH2 benchmarks (barnes, cholesky, fft, lu,
ocean, radiosity, radix, raytrace, and water-nsquared) with
the sim-small and reference input sets.

We collected runtime and activity information, which we
use to determine energy. Energy numbers are scaled for
supply voltage, technology and variation parameters.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

5.2. Delay, Power and Variation Models

For power and delay models at near threshold, we use
the models from Markovic̀ et al [26], reproduced here in
Equations 1, 2, 3, 4 and 5.
Ids is the drain-source current used to compute dynamic

power. ILeakage is the leakage current used to compute static
power. IC is a parameter called the inversion coefficient
that describes proximity to threshold voltage, η is the sub-
threshold slope, µ is the carrier mobility, and kfit and ktp

are fitting parameters for current and delay.

Ids =
Is · IC
kfit

(1)

Is = 2 · µ · Cox ·
W

L
· φ2

t · η (2)

IC =

(
ln

(
e

(1+σ)·Vdd−Vth
2·η·φt + 1

))2

(3)

tp =
ktp · CLoad · Vdd

2 · η · µ · Cox · WL · φ
2
t

.
kfit

IC
(4)

ILeakage = Is · e
σ·Vdd−Vth

η·φt (5)

We model variation in threshold voltage (Vth) and effec-
tive gate length (Leff) using the VARIUS model [34]. We
used the Markovic̀ models to determine core frequencies as
a function of Vdd and Vth. To model the effects of Vth varia-
tion on core frequency, we generate a batch of 100 chips that
have different Vth (andLeff) distributions generated with the
same mean and standard deviation. This data is used to gen-
erate probability distributions of core frequency at nominal
and near threshold voltages.

To keep simulation time reasonable, we ran the microar-
chitectural simulations using four random normal distribu-
tions of core Vth with a standard deviation of 12% over the
nominal Vth. All core and cache frequencies are integer
multiples of a 25MHz reference clock. The L2 cache and
NoC are on the lower voltage rail, with operating frequen-
cies constrained accordingly. We ran all experiments with
each frequency distribution, and we report the arithmetic
mean of the results.

Table 2 summarizes the experimental parameters.

6. Evaluation
We evaluate the performance and energy benefits of

eliminating core-to-core frequency variation with Booster
VAR and reducing application imbalance with Booster
SYNC. We compare the effectiveness of Booster VAR to
a mechanism that mitigates frequency variation through
thread scheduling similar to the ones in [31, 36]. We also
compare Booster SYNC with an ideal implementation of
Thrifty Barrier [23].

We begin by evaluating the effects of process variation
on core frequency at low voltage.

CMP architecture
Cores 32, out-of-order
Fetch/issue/commit width 2/2/2
Register file size 76 int, 56 fp
Instruction window 56 int, 24 fp
L1 data cache 4-way 16KB, 1-cycle access
L1 instruction cache 2-way 16KB, 1-cycle access
Distributed L2 cache 8-way 8MB, 10 cycle access
Technology 32nm
Core, L1 Vdd 400-600mV
Core, L1 frequency 300-2300MHz, 25MHz increments
L2, NoC Vdd 400mV
L2, NoC frequency 400MHz
Variation parameters
Vth mean (µ), 210mV
Vth std. dev./mean (σ/µ) 12%

Table 2. Summary of the experimental parameters.

Vth σ/µ Freq. σ/µ at 900mV Freq. σ/µ at 400mV
3% 1.0% 7.5%
6% 2.1% 15.1%
9% 3.2% 22.8%

12% 4.4% 30.6%
Table 3. Frequency variation as a function of Vth σ/µ and Vdd.

6.1. Frequency Variation at Low Voltage

Low-voltage operation increases the effects of process
variation dramatically. Using our variation model, we
examine within-die frequency variation at both nominal
(900mV) and near threshold Vdd (400mV). In Figure 4 we
show core-to-core variation in frequency as a probability
distribution of core frequency divided by die mean (aver-
age over all cores in the same die). The distributions shown
are for 9% and 12% within-die Vth variation. At nominal
Vdd the distribution is relatively tight, with only 4.4% fre-
quency standard deviation divided by the mean (σ/µ). At
low voltage, frequency variation is 30.6% σ/µ with cores
deviating from less than half to more than 1.5× the mean.
Table 3 summarizes the impact of different amounts of Vth
variation on frequency σ/µ.

The high within-core variation deteriorates CMP fre-
quency significantly. In the absence of variation, a 32nm
CMP at 400mV would be expected to run at about 400MHz.
At the same Vdd, a 12% Vth variation would bring the aver-
age frequency across all dies to 149MHz, assuming each
die’s frequency is set to that of its slowest core.

To avoid the severe degradation in CMP frequency, each
core can be allowed to run at its best frequency, resulting
in a heterogeneous CMP. However, the random nature of
variation-induced heterogeneity can still lead to poor and
unpredictable performance.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 0.5 1 1.5 2

Pr
ob

ab
ili

ty
 d

ist
rib

ut
io

n

Relative frequency

900mV, Vth σ/µ= 9%
900mV, Vth σ/µ=12%
400mV, Vth σ/µ= 9%
400mV, Vth σ/µ=12%

Figure 4. Core-to-core frequency variation at nominal and near-
threshold Vdd, relative to die mean (average over all cores in the
same die).

6.2. Workload Balance in Parallel Applications

The way in which parallel applications handle work-
load partitioning has a direct impact on their performance
when running on heterogeneous vs. homogeneous CMPs.
Broadly speaking, parallel applications divide work either
statically at compile time or dynamically during execution.

6.2.1 Static Load Partitioning

Statically partitioned workloads are generally designed for
homogeneous systems. Significant effort goes into making
sure work assignment is as balanced as possible. In general,
well-balanced workloads are expected to perform poorly on
heterogeneous CMPs because their performance is limited
by the slowest core. For instance, each thread of fft exe-
cutes the same algorithm and processes the same amount of
data. A slow thread bottlenecks the performance of the en-
tire application. These applications should benefit from the
performance homogeneity of Booster VAR.

Many applications like lu, radix, and dedup are inher-
ently unbalanced due to algorithmic characteristics. In the-
ory, these applications could perform well on heterogeneous
systems if critical threads are continuously matched to fast
cores. In practice, their performance is unpredictable, espe-
cially when running on systems with variation-induced het-
erogeneity. These are the types of applications we expect
will benefit most from Booster SYNC.

6.2.2 Dynamic Load Balancing

Some applications, like radiosity and raytrace, employ
mechanisms for dynamically rebalancing workload alloca-
tion across threads. Dynamic load balancing is benefi-
cial when the runtime of individual work units is highly
variable. These applications adapt well to performance-
heterogenous systems. As a result, we expect them to ben-
efit little from the Booster framework.

We summarize in Table 4 the relevant algorithmic char-
acteristics of all benchmarks we simulated. We include the
expected benefits from Booster VAR and Booster SYNC. For
applications like radix, water-nsquared, fluidanimate and
bodytrack, even though they are either statically partitioned
and balanced, or use dynamic load balancing, some benefit
from Booster SYNC is still possible. This is because the ap-
plications include some amount of serialization in the code
or have a serial master thread that can be sped up by Booster
SYNC.

6.3. Booster Performance Improvement

We evaluate the performance of Booster VAR and
Booster SYNC relative to a heterogenous baseline in which
each core runs at its best frequency. Figure 5 shows the
execution times of all benchmarks normalized to the base-
line (“Heterogeneous”). The target frequency for Booster is
chosen to match the average frequency of the heterogeneous
baseline.

We also compare Booster VAR and Booster SYNC to
a heterogeneity-aware thread scheduling approach, “Het-
ero Scheduling,” that dynamically migrates slow threads to
faster cores and short-running threads to slower cores. This
technique is similar to those used to cope with heterogene-
ity in [31] and [36], but we apply it to multithreaded work-
loads. In our implementation, migration occurs at barrier
synchronization points using thread criticality information
collected over the previous synchronization interval. We
chose an ideal implementation of “Hetero Scheduling” that
introduces no performance penalty from thread migration,
except when caused by incorrect criticality prediction from
one barrier to the next.

Booster VAR improves the performance of workloads
that use static work allocation by an average of 14% com-
pared to the baseline. “Hetero Scheduling” also performs
better than the baseline for statically scheduled workloads
but reduces execution time by only 5%. As expected, work-
loads that use dynamic rebalancing adapt well to hetero-
geneity and have no performance benefit from Booster VAR
or from “Hetero Scheduling.” Booster VAR is especially
beneficial for balanced workloads such as fft, blackscholes
or water-nsquared that are hurt by heterogeneity. “Hetero
Scheduling,” on the other hand, can do little to help these
cases.

Booster SYNC builds on the Booster VAR framework, al-
locating the boost budget to critical or active threads. This
leads to significant performance improvements, even for
workloads where Booster VAR is ineffective. For statically
partitioned workloads with significant imbalance, such as
dedup, swaptions or streamcluster, Booster SYNC improves
performance between 15% and 20%. Booster VAR brings
no performance gains for these applications. Booster SYNC
also helps some dynamically balanced applications that

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

Benchmark Workload characteristics Booster VAR Booster SYNC
barnes Static partitioning of data, balanced Likely to benefit Unlikely to benefit
cholesky Static partitioning of data, no global synchronization Likely to benefit Unlikely to benefit
fft Static partitioning of data, highly balanced Likely to benefit Unlikely to benefit
lu Static partitioning of data, highly unbalanced Unpredictable Likely to benefit
ocean Static partitioning of data, balanced, heavily synchronized Likely to benefit Unlikely to benefit
radiosity Task stealing and dynamic load balancing Unlikely to benefit Unlikely to benefit
radix Static partitioning of data, balanced, some serialization Likely to benefit Possible benefit
raytrace Task stealing and dynamic load balancing Unlikely to benefit Unlikely to benefit
volrend Task stealing and dynamic load balancing Unlikely to benefit Unlikely to benefit
water-nsquared Static partitioning of data, balanced, some serialization Likely to benefit Possible benefit
blackscholes Static partitioning of work, balanced Likely to benefit Unlikely to benefit
bodytrack Serial master, dynamically balanced parallel kernels Unlikely to benefit Possible benefit
dedup Unbalanced software pipeline stages with multiple thread pools Unpredictable Likely to benefit
fluidanimate Static partitioning of work, balanced, some serialization Likely to benefit Possible benefit
streamcluster Static partitioning of data, unbalanced, heavily synchronized Unpredictable Likely to benefit
swaptions Static partitioning of data, unbalanced Unpredictable Likely to benefit

Table 4. Benchmark characteristics and expected benefit from Booster given algorithm characteristics

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

radiosity

raytrace

volrend

bodytrack

g.mean

barnes
ocean

water-nsquared

cholesky

fft lu radix
blackscholes

fluidanimate

swaptions

dedup
streamcluster

g.mean

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

Dynamic load balancing Static work allocation

Heterogeneous Hetero Scheduling Booster VAR Booster SYNC

Figure 5. Runtimes of Booster VAR, Booster SYNC, and “Hetero Scheduling,” relative to Heterogeneous (best frequency) baseline.

have significant serialization due to resource contention,
such as bodytrack, by boosting their critical sections.

Balanced applications like fft, blackscholes and water-
nsquared, which benefit significantly from Booster VAR,
have little or no additional performance gains from Booster
SYNC. Overall, Booster SYNC complements Booster VAR
very well. On average, it is 22% faster than the baseline for
static workloads and 9% faster for dynamic workloads.

6.3.1 Impact of Different Synchronization Primitives

Figure 6 shows the effects of Booster SYNC responding to
hints from different synchronization primitives in isolation,
for a few benchmarks. lu is a very unbalanced barrier-
based workload. Providing the Booster governor with hints
about barrier activity speeds up the application by 24% over
Booster VAR. Information about locks, conditions or thread
spawning does not help speed up lu. bodytrack makes
heavy use of locks, with a substantial amount of contention.
Speeding up critical sections results in a 17% speed increase
over Booster VAR. Boosting cores that are not blocked on
condition waits also helps. swaptions uses no synchro-
nization at all but instead actively spawns and terminates
worker threads. As a result, it benefits greatly from pro-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

lu bodytrack swaptions

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Booster VAR
Barriers

Locks

Conditions
No Task

Booster SYNC (All)

Figure 6. Booster SYNC performance impact of using hints from
different types of synchronization primitives in isolation.

viding the Booster governor with information about active
thread count, which allows the redistributing of boost bud-
get from unused cores. This speeds up swaptions by 15%
over Booster VAR.

6.4. Booster Energy Delay Reduction

We examine the energy implications of Booster VAR and
Booster SYNC compared to the baseline. Figure 7 shows the
energy delay product (ED) for each benchmark. We com-
pare with an ideal implementation of “Thrifty Barrier” [23],
which puts cores into a low-power state when they reach a
barrier, with no wakeup time penalty.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

radiosity

raytrace

volrend

bodytrack

g.mean

barnes
ocean

water-nsquared

cholesky

fft lu radix
blackscholes

fluidanimate

swaptions

dedup
streamcluster

g.mean

N
o
rm

al
iz

ed
 E

n
er

g
y
 x

 D
el

ay

Dynamic load balancing Static work allocation

Heterogeneous Thrifty Barrier Booster VAR Booster SYNC

Figure 7. Energy×delay for Booster VAR, Booster SYNC, and ideal Thrifty Barrier, relative to Heterogeneous (best frequency) baseline.

Booster VAR generally uses more power than the “Het-
erogeneous” baseline in order to achieve homogeneous per-
formance at the same average frequency. As a result, ED
is actually higher than the baseline for the dynamically
balanced workloads. However, for statically partitioned
benchmarks, Booster VAR lowers ED by 11%, on average.
Booster SYNC is much more effective at reducing energy
delay because in addition to speeding up applications, it
saves power by putting inactive cores to sleep. It achieves
41% lower ED for static workloads and 25% lower ED for
dynamic workloads, relative to the baseline.

Our implementation of “Thrifty Barrier” has consider-
ably lower ED than Booster VAR because it runs on a lower-
power baseline and, unlike Booster VAR, it has the ability
to put inactive cores into a low power mode. The ED of
Booster SYNC is close to that of the ideal “Thrifty Barrier”
implementation: slightly higher for dynamic workloads and
slightly lower for static workloads. Note that the goals
for Booster and “Thrifty Barrier” are different. Booster is
meant to improve performance while “Thrifty Barrier” is
designed to save power.

6.5. Booster Performance Summary

Figure 8 summarizes the results, showing geometric
means across all benchmarks. All results are normalized to
the “Heterogeneous” (best frequency) baseline. In addition,
we also compare to a more conservative design, “Homoge-
neous,” in which the entire CMP runs at the frequency of
its slowest core. To make a fair comparison, we assume the
voltage of the “Homogeneous” CMP is higher, such that its
frequency is equal to the average frequency of the “Hetero-
geneous” design.

The frequency for the “Homogeneous” baseline is the
same as the target frequency for Booster VAR. As a result,
the execution time of the two is very close, with Booster
VAR only slightly slower due to the overhead of the Booster
framework. However, to achieve the same frequency, the
“Homogeneous” baseline runs at a much higher voltage,
which increases power consumption by 70% over the “Het-
erogeneous” baseline. Booster VAR also has higher power
than the heterogeneous baseline, but by only 20%. Booster
SYNC is a net gain in both performance (19% faster than

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Runtime Power Energy ED EDD

N
o

rm
al

iz
ed

 M
et

ri
c

Homogeneous (min F)
Heterogeneous (best F)

Booster VAR
Booster SYNC

Figure 8. Summary of performance, power and energy metrics for
Booster VAR and Booster SYNC compared to the “Homogeneous”
and “Heterogeneous” baselines.

baseline) and power (5% lower than baseline), which leads
to 23% lower energy and 38% lower energy delay product.

When considering the “voltage-invariant” metric ED2,
Booster VAR is 16% better and Booster SYNC is 50% better
than the heterogeneous baseline.

7. Related Work

7.1. Low Voltage Designs

Previous work has demonstrated the energy efficiency of
very low voltage designs [6, 8, 9, 26, 39]. Architectures de-
signed specifically to take advantage of low voltage proper-
ties such as fast caches relative to logic have been proposed
by Zhai et al. [39] and Dreslinski et al. [9]. Other work has
focused on improving the reliability of large caches in low
voltage processors [11, 29]. While significant progress has
been made in bringing this technology to market, includ-
ing a prototype processor from Intel [38], many challenges
remain, including reliability and high variation.

7.2. Dual-Vdd Architectures

Previous work has proposed dual and multi-Vdd designs
with the goal of improving energy efficiency. Most pre-
vious work has focused on tuning the delay vs. power-
consumption of paths at fine granularity within the proces-
sor. For instance, Kulkarni et al. [20] propose a solution for
assigning circuit blocks along critical paths to the higher
power supply, while blocks along non-critical paths are as-

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

signed to a lower power supply. Liang et al. proposed Re-
vival [24], which uses voltage selection at pipeline stage
granularity to reduce the effects of delay variation. Calhoun
and Chandrakasan proposed local voltage dithering [4] to
achieve very fast dynamic voltage scaling in subthreshold
chips. These solutions assign multiple voltages at much
finer granularity than in our design, incurring a higher de-
sign and verification complexity.

Miller et al. [30] proposed using dual-Vdd assignment at
core granularity to reduce variation effects. Based on man-
ufacturing time test results, fast cores are placed on a low
voltage rail (to reduced wasted power) and slow cores on
a higher rail (to speed them up). This static assignment
reduces frequency variation but does not eliminate it com-
pletely. The Booster framework uses dynamic voltage as-
signment, which is much more effective, eliminating fre-
quency variation completely.

In his dissertation [7], Dreslinski proposed a dual Vdd
system for fast performance boosting of serial bottlenecks
in NTC systems. This was specifically applied to over-
coming challenges with parallelizing transactional memory
systems and to throughput computing. Dreslinski’s work
boosts cores to very high frequency, at nominal voltages,
with much higher power cost. In Booster, both Vdd rails are
at low voltage, improving the system’s energy efficiency.
Booster also eliminates frequency variation.

7.3. On-chip Voltage Regulators

Fast on-chip regulators [18, 19] are a promising tech-
nology that could allow fine-grain voltage and frequency
control at core (or clusters of cores) granularity. They can
also perform voltage changes much faster than off-chip reg-
ulators, making them a more flexible alternative to a dual-
Vdd design. However, on-chip regulators do face signifi-
cant challenges to widespread adoption. One challenge is
low efficiency, with power losses of 25–50% due to their
high switching frequency. They are also more susceptible
to large voltage droops because of much smaller decou-
pling and filter capacitances available on-chip. Limiting the
size of on-chip capacitors and inductors without affecting
voltage stability remains challenging, although significant
progress has been made in recent work [18].

7.4. Balancing Parallel Applications

Previous work has exploited imbalance in multithreaded
parallel workloads primarily by scaling the supply voltage
and frequency of processors running non-critical threads.
Thrifty Barrier [23] uses prediction of thread runtime to es-
timate how long a thread will wait at a barrier. For longer
sleep times, the CPU can be put into deeper sleep states
that may require more time to wake up. An alternative
to sleeping at the barrier is proposed by Liu et al. [25].
Their approach is to use DVFS to slow down non-critical

threads so that all threads complete at the same time. This
approach has the potential for greater energy savings be-
cause non-critical threads run at a lower average voltage and
frequency, which, in general, is more energy-efficient then
running at a high voltage and frequency and then going into
sleep mode. Cai et al. take a different approach to criticality
prediction in Meeting Points [3]. They use explicit instru-
mentation of worker threads to keep track of progress and
use this information to decide on voltage and frequency as-
signments.

Our work is different from these previous designs in two
important ways. First, our goal is to improve performance
whereas in the work described above the goal was to save
power. Second, our approach is reactive adaptation, which
means we do not require predictors of thread criticality.
While we do use hints from the synchronization libraries
to determine thread priority, because Booster SYNC is en-
tirely reactive, these hints can be simple notifications about
state changes rather than complex and sometimes inaccurate
predictions.

Task stealing [2] is a popular scheduling technique for
fine-grain parallel programming models. Task stealing
poses several challenges in terms of organizing the task
queues (distributed or hierarchical), choosing a policy for
enqueuing, dequeuing or stealing tasks, etc. It has also been
shown [10, 12] that no single task stealing solution works
for all scheduling-sensitive workloads. The Booster frame-
work is less helpful to parallel applications that use dynamic
work allocation such as task stealing.

8. Conclusions
This paper presents Booster, a simple, low-overhead

framework for dynamically reducing performance hetero-
geneity caused by process variation and application im-
balance. Booster VAR completely eliminates core-to-core
frequency variation resulting in improved performance for
statically partitioned workloads. Booster SYNC reduces the
effects of workload imbalance, improving performance by
19% on average and reducing energy delay by 23%.

Acknowledgements
This work was supported in part by the National Sci-

ence Foundation under grant CCF-1117799 and an alloca-
tion of computing time from the Ohio Supercomputer Cen-
ter. The authors would like to thank the anonymous re-
viewers for their valuable feedback and suggestions, most
of which have been included in this final version.

References
[1] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for

dynamic performance, power, and resource management in chip mul-
tiprocessors. In International Symposium on Computer Architecture,
pages 290–301, June 2009.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM, 46:720–748,
September 1999.

[3] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González. Meeting points: Using thread criticality to adapt mul-
ticore hardware to parallel regions. In International Conference on
Parallel Architectures and Compilation Techniques, pages 240–249,
October 2008.

[4] B. Calhoun and A. Chandrakasan. Ultra-dynamic voltage scaling
(UDVS) using sub-threshold operation and local voltage dithering.
41(1):238–245, January 2006.

[5] A. Chandrakasan, D. Daly, D. Finchelstein, J. Kwong, Y. Ramadass,
M. Sinangil, V. Sze, and N. Verma. Technologies for ultradynamic
voltage scaling. Proceedings of the IEEE, 98(2):191–214, February
2010.

[6] L. Chang, D. Frank, R. Montoye, S. Koester, B. Ji, P. Coteus,
R. Dennard, and W. Haensch. Practical strategies for power-efficient
computing technologies. Proceedings of the IEEE, 98(2):215–236,
February 2010.

[7] R. Dreslinski. Near Threshold Computing: From Single Core to
Many-Core Energy Efficient Architectures. PhD thesis, The Univer-
sity of Michigan, 2011.

[8] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge. Near-threshold computing: Reclaiming Moore’s law
through energy efficient integrated circuits. Proceedings of the IEEE,
98(2):253–266, February 2010.

[9] R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw, D. Sylvester, and
K. Flautner. Reconfigurable energy efficient near threshold cache ar-
chitectures. In International Symposium on Microarchitecture, pages
459–470, December 2008.

[10] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of OpenMP task
scheduling strategies. In International Conference on OpenMP in a
New Era of Parallelism, pages 100–110, May 2008.

[11] H. R. Ghasemi, S. Draper, and N. S. Kim. Low-voltage on-chip cache
architecture using heterogeneous cell sizes for multi-core processors.
In IEEE International Symposium on High-Performance Computer
Architecture, pages 38–49, February 2011.

[12] Y. Guo, R. Barik, R. Raman, and V. Sarka. Work-first and help-
first scheduling policies for async-finish task parallelism. In IEEE
International Parallel and Distributed Processing Symposium, pages
1–12, May 2009.

[13] S. Herbert and D. Marculescu. Mitigating the impact of variability on
chip-multiprocessor power and performance. IEEE Transactions on
Very Large Scale Integrated Systems, 17:1520–1533, October 2009.

[14] E. Humenay, D. Tarjan, and K. Skadron. The impact of system-
atic process variations on symmetrical performance in chip multi-
processors. In Design, Automation and Test in Europe, April 2007.

[15] Intel CoreTM i7 Processor. http://www.intel.com.
[16] International Technology Roadmap for Semiconductors (2009).
[17] H. Jiang and M. Marek-Sadowska. Power gating scheduling for

power/ground noise reduction. In Design Automation Conference,
pages 980–985, June 2008.

[18] W. Kim, D. Brooks, and G.-Y. Wei. A fully-integrated 3-level
DC/DC converter for nanosecond-scale DVS with fast shunt regu-
lation. In International Solid-State Circuits Conference, pages 268–
270, February 2011.

[19] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core DVFS using on-chip switching regulators. In IEEE
International Symposium on High-Performance Computer Architec-
ture, pages 123–134, February 2008.

[20] S. Kulkarni, A. Srivastava, and D. Sylvester. A new algorithm for
improved VDD assignment in low power dual VDD systems. In In-
ternational Symposium on Low Power Electronics and Design, pages
200–205, May 2004.

[21] N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar.
Next generation Intel Core micro-architecture (Nehalem) clocking.
IEEE Journal of Solid-State Circuits, 44(4):1121–1129, April 2009.

[22] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis. Power management of datacenter workloads using
per-core power gating. IEEE Computer Architecture Letters, 8:48–
51, July 2009.

[23] J. Li, J. Martı́nez, and M. C. Huang. The thrifty barrier: Energy-
aware synchronization in shared-memory multiprocessors. In IEEE
International Symposium on High-Performance Computer Architec-
ture, pages 14–24, February 2004.

[24] X. Liang, G.-Y. Wei, and D. Brooks. ReVIVaL: A variation-tolerant
architecture using voltage interpolation and variable latency. IEEE
Micro, 29(1):127–138, 2009.

[25] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin. Ex-
ploiting barriers to optimize power consumption of CMPs. In IEEE
International Parallel and Distributed Processing Symposium, pages
1–5, April 2005.

[26] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey.
Ultralow-power design in near-threshold region. Proceedings of the
IEEE, 98(2):237–252, February 2010.

[27] P. Maulik and D. Mercer. A DLL-based programmable clock multi-
plier in 0.18-um CMOS with -70 dBc reference spur. IEEE Journal
of Solid-State Circuits, 42(8):1642–1648, August 2007.

[28] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican,
W. H. Parks, and S. Naffziger. Power and temperature control on a
90-nm Itanium family processor. IEEE Journal of Solid-State Cir-
cuits, 41(1):229–237, January 2006.

[29] T. Miller, J. Dinan, R. Thomas, B. Adcock, and R. Teodorescu.
Parichute: Generalized turbocode-based error correction for near-
threshold caches. In International Symposium on Microarchitecture,
pages 351–362, December 2010.

[30] T. Miller, R. Thomas, and R. Teodorescu. Mitigating the effects of
process variation in ultra-low voltage chip multiprocessors using dual
supply voltages and half-speed stages. IEEE Computer Architecture
Letters, 11(1), 2012.

[31] K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: Fine-
grained power management for multi-core systems. In International
Symposium on Computer Architecture, pages 302–313, June 2009.

[32] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. Sarangi, P. Sack, and P. Montesinos. SESC Simula-
tor, January 2005. http://sesc.sourceforge.net.

[33] T. Saeki, M. Mitsuishi, H. Iwaki, and M. Tagishi. A 1.3-cycle lock
time, non-PLL/DLL clock multiplier based on direct clock cycle in-
terpolation for clock on demand. IEEE Journal of Solid-State Cir-
cuits, 35(11):1581–1590, November 2000.

[34] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas. VARIUS: A model of parameter variation and result-
ing timing errors for microarchitects. IEEE Transactions on Semi-
conductor Manufacturing, 21(1):3–13, February 2008.

[35] D. Shelepov, J. C. S. Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F.
Huang, S. Blagodurov, and V. Kumar. Hass: A scheduler for het-
erogeneous multicore systems. SIGOPS Operating Systems Review,
43(2):66–75, April 2009.

[36] R. Teodorescu and J. Torrellas. Variation-aware application schedul-
ing and power management for chip multiprocessors. In Interna-
tional Symposium on Computer Architecture, pages 363–374, June
2008.

[37] J. Torrellas. Architectures for extreme-scale computing. IEEE Com-
puter, 42:28–35, November 2009.

[38] S. Vangal. A solar powered IA core? No way! Research@Intel,
September 2011. http://blogs.intel.com/research/2011/09/ntvp.php.

[39] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and D. Sylvester.
Energy efficient near-threshold chip multi-processing. In Interna-
tional Symposium on Low Power Electronics and Design, pages 32–
37, August 2007.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 01:56:59 UTC from IEEE Xplore. Restrictions apply.

