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Abstract

Power consumption is a primary concern for micropro-
cessor designers. Lowering the supply voltage of processors
is one of the most effective techniques for improving their en-
ergy efficiency. Unfortunately, low-voltage operation faces
multiple challenges going forward. One such challenge is
increased sensitivity to voltage fluctuations, which can trig-
ger so-called “voltage emergencies” that can lead to errors.
These fluctuations are caused by abrupt changes in power de-
mand, triggered by processor activity variation as a function
of workload.

This paper examines the effects of voltage fluctuations
on future many-core processors. With the increase in the
number of cores in a chip, the effects of chip-wide activity
fluctuation – such as that caused by global synchroniza-
tion in multithreaded applications – overshadow the effects
of core-level workload variability. Starting from this ob-
servation, we developed VRSync, a novel synchronization
methodology that uses emergency-aware scheduling policies
that reduce the slope of load fluctuations, eliminating emer-
gencies. We show that VRSync is very effective at eliminating
emergencies, allowing voltage guardbands to be significantly
lowered, which reduces energy consumption by an average
of 33%.

1. Introduction

Power consumption is one of the most significant road-
blocks to future technology scaling according to projections
from the International Technology Roadmap for Semicon-
ductors (ITRS) [11]. Lowering supply voltage is one of the
most effective techniques for improving energy efficiency,
as evidenced by recent breakthroughs in low-voltage process
technology in industry [9, 15]. Unfortunately, low-voltage
operation faces multiple challenges going forward.

One of these challenges is increased sensitivity to voltage
fluctuations. These fluctuations are caused by abrupt changes
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in power demand triggered by processor activity variation
with workload. If the voltage deviates too much from its
nominal value, it can lead to so-called “voltage emergencies,”
which can cause timing violations and memory retention
errors in the processor. To prevent these emergencies, chip
designers add voltage margins that in modern processors
can be as high as 20% [12, 26], leading to higher power
consumption than necessary.

Previous work [4, 5, 6, 7, 13, 24, 25, 26] has pro-
posed several hardware and software mechanisms for re-
ducing the slope of current changes (dI/dt), which damp-
ens voltage fluctuations. This allows the use of smaller
voltage guardbands, saving substantial amounts of power.
All previous work, however, has focused on single-core
[4, 6, 7, 13, 24, 25] or low core-count systems [4, 26].

In this work we show that, as the number of cores in future
CMPs increases, the effects of chip-wide activity variation
will overshadow the effects of within-core workload variabil-
ity. The power demand of individual cores will account for
a much smaller fraction of the chip’s total power consump-
tion. As a result, core-local activity is less likely to cause
large power fluctuations that lead to emergencies. However,
chip-wide coordinated activity such as that forced by global
synchronization in multithreaded applications leads to much
larger and rapid power fluctuations. For instance, barrier
synchronization causes blocked threads to idle with very
low power consumption. When all idle threads are released
from a barrier the associated jump in activity across all cores
leads to very large power spikes that can lead to voltage
emergencies. Going forward, we will need to rethink the
mechanisms used to avoid voltage emergencies to ensure
they are effective and energy-efficient as the number of cores
continues to scale.

This paper characterizes voltage variability in large CMPs
running at low voltages. It shows that, in a 32-core CMP
running multithreaded benchmarks, the most severe voltage
droops are associated with thread synchronization primitives
such as barriers and, to a lesser extent, with other thread
activity such as new thread spawning. We find that about half
of the benchmarks tested (a mix of SPLASH2 and PARSEC
applications) trigger multiple emergencies in system with a
typical 10% voltage guardband.
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Starting from this observation, we propose VRSync, a
voltage-aware synchronization methodology that controls
thread activity in critical scenarios. For example, VRSync en-
forces the gradual release of threads from barriers, leading to
a gradual increase in power consumption. This limits the am-
plitude of the largest voltage droops, avoiding emergencies
with smaller guardbands. VRSync is a software-only solution
that can be implemented in system-level synchronization li-
braries and/or the OS. VRSync eliminates all emergencies in
the benchmarks we test, allowing for a lower voltage guard-
band. A CMP with VRSync and a small guardband uses 33%
less energy than a system that uses voltage guardbanding
alone to eliminate emergencies. The runtime overhead of
VRSync varies greatly with the density of synchronization
and other application behavior, but averages about 6%.

Overall, this paper makes the following contributions:

• Analyzes the effects of thread synchronization on supply
voltage stability. To the best of our knowledge, this is the
first work to identify synchronization events as a major
source of severe voltage droops in large CMPs. These
observations are validated with power measurements from
a 4-core, Intel Core i7 system.
• Shows that synchronization-induced emergencies are

more likely as the number of cores increases.
• Presents VRSync, a novel synchronization methodology

that prevents voltage emergencies, allowing smaller guard-
bands and saving energy.
• Evaluates VRSync using a commercial regulator model.

The rest of this paper is organized as follows: Section 2
provides some background on the design and limitations
of voltage regulators. Section 3 analyzes synchronization-
induced voltage droops in CMPs. Section 4 details the design
and implementation of VRSync. An experimental evaluation
is presented in Sections 5 and 6. Section 7 discusses related
work, and Section 8 concludes.

2. Power Delivery and Regulation
Power to a modern CPU is delivered and controlled by a

voltage regulator circuit. The regulator performs two main
functions: It steps down the supply voltage to the level re-
quired by the CPU, and it keeps the voltage stable under
varying current loads. Regulation is typically achieved by
charging a capacitor on a duty cycle, using a low pass RLC
filter to integrate the resulting voltage. The regulator moni-
tors the output voltage and compares it to a reference voltage.
When deviations occur (e.g. due to a change in load) it ad-
justs the duty cycle to maintain a stable output voltage.

2.1. Voltage Droops

Regulators are designed to respond quickly and precisely
to changes in current loads, to prevent voltage fluctuations
outside a narrow band around the nominal Vdd (typically ±

10%). Response time is, however, constrained by capacitor
sizes, propagation latency (regulators generally reside off-
chip) and by regulator switching frequencies. When load
changes are small, the regulator easily controls the amplitude
of the fluctuations. Figure 1(a) shows regulator response
to an increase of 25 Amps/µs. Details on the regulator
simulation are provided in Section 5. The supply voltage
initially droops slightly, but the regulator quickly responds
and prevents the output Vdd from decreasing by more than
10% of the nominal Vdd. In addition, some of the smaller
high-frequency load fluctuations are generally absorbed by
on-chip decoupling capacitors.

By contrast, Figure 1(b) shows regulator response to a
larger load change (45 Amps/µs). In this case, the mag-
nitude and rate of increase are too great for the regulator,
and we observe a droop that exceeds the safety margin and
leads to an emergency. In our model, this current increase
corresponds to about eight cores going from power-off to
max power in one microsecond. In reality individual cores
would not normally see such a large and abrupt load increase.
However, lesser increases coordinated across many cores
can have similar or worse effect.

3. Voltage Droops in Multithreaded Workloads
Multithreaded workloads use synchronization primitives

to coordinate activity in ways that can lead to simultaneous
changes in compute intensity and power consumption.

3.1. Barrier-Induced Droops

Barriers are particularly problematic because they typi-
cally coordinate the execution of large numbers of threads.
Participating threads stall at a barrier until the last thread ar-
rives. While threads are waiting to be released, their activity
and power consumption are low. Moreover, power manage-
ment techniques can clock-gate idling cores [1, 16] further
reducing their power consumption. When idle threads are
finally released from the barrier, cores typically experience
a surge of activity, causing a spike in current demand and
power consumption, which can lead to a voltage emergency.

Figure 2 shows the power consumption for a 4-core Intel
Core i7 processor running the PARSEC benchmark fluidan-
imate with 4 working threads and the sim-large input set.
The trace was obtained using Intel’s Running Average Power
Limit (RAPL) interface [8] that provides access to an inter-
nal energy counter updated every millisecond. The counter
tallies the energy expended by the 4 cores but excludes the
“un-core” components such as the on-chip memory controller.
In addition to power, the figure also shows how many threads
(cores) are blocked at a barrier at any given time. The figure
captures one of the “frames” in the fluidanimate benchmark
which includes eight barriers. In most cases, as cores arrive
at a barrier, the power consumption drops followed by a sig-
nificant spike. This is evident for all the barriers except the
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Figure 1: Voltage regulator response to a small (a) and large (b) change in load.
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Figure 2: Processor power consumption while running the PAR-
SEC benchmark fluidanimate on a 4-core Intel Core i7 system.

first and last ones, which occur during (or before) low-power
serial sections. The power spikes are quite severe in some
cases – for instance following barrier #5 – and can lead to
voltage emergencies.

In this experiment synchronization events are not the only
triggers of significant power fluctuations. We can observe
other significant spikes that are likely caused by other archi-
tectural events such as long latency cache misses followed
by bursts of activity. This behavior is consistent with that
observed in previous work that examined voltage emergen-
cies in 2-core [26] or 4-core [4] CMPs. Those studies did
not single out synchronization events as a significant source
of voltage emergencies.

3.2. Impact of Core Count on Voltage Droops

Core counts are likely to continue to increase for the
foreseeable future. We therefore examine the effects of
synchronization events on power fluctuation in processors
with larger numbers of cores. We run the same application
(fluidanimate) on simulated many-core systems with 4, 8
and 32 cores, increasing the number of threads to match
the number of cores. To provide a fair comparison of the
relative magnitude of the voltage fluctuations, all systems
are scaled to have the same maximum power (TDP). To keep

simulation time reasonable, we use the sim-small reference
input set. Details about the experimental methodology are
provided in Section 5.

We find that the number of cores in the CMP has a direct
impact on the magnitude of the power fluctuations caused by
synchronization events, relative to those caused by core-level
activity variation. Figure 3 shows the power profile for the
three runs. Figure 3(a) shows that, for the 4-core case, the
power profile follows that observed in the native execution
(Figure 2). The simulation shows more local variability be-
cause the simulation models power at cycle granularity while
the native execution can only be sampled every millisecond.
Some of the power spikes correlate well with barrier activity.
However, other local events are also causing significant fluc-
tuations, just like in the native run. The ratio between the
amplitude of the power spikes caused by barriers and non
barrier-related events over the same time interval is close to
1, meaning they are equally likely to lead to emergencies.

However, as the core count increases, within-core work-
load variability has a lower impact on chip-level power con-
sumption. Events that trigger power fluctuations within
individual cores are less likely to occur simultaneously on
multiple cores and, as a result, their effects on power variabil-
ity will tend to cancel each other out. This is visible in Figure
3(b), which shows power consumption when running on an
8-core configuration. Compared to the 4-core configuration,
the benchmark exhibits less variability in power in sections
of the application without barrier activity. However, around
barriers, power fluctuations are much higher. The ratio be-
tween the barrier and non-barrier related spikes is closer
to 3 in this case. This trend becomes significantly more
pronounced for 32 cores (Figure 3(c)) with barrier-induced
power spikes 6× larger than non barrier-related spikes. This
trend suggests that, in the large CMPs of the near-future,
coordinated activity fluctuation across many cores is much
more likely to lead to voltage emergencies than within-core
workload variability.

We have observed a similar behavior in most of the
barrier-based benchmarks we examined. Figure 4 shows
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Figure 3: Power variation for fluidanimate running on CMP configurations with: (a) 4 cores, (b) 8 cores and (c) 32 cores.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0  10  20  30  40  50  60  70  80
 0

 8

 16

 24

 32

P
o
w

e
r 

(W
a
tt

s)

C
o
re

s 
in

 B
a
rr

ie
r

Time (milliseconds)

Cores in Barrier
Power (Watts)

Figure 4: Power variation in response to barrier synchronization
for barnes running on a CMP with 32 cores.

the power profile for barnes (a SPLASH2 application) run-
ning on 32 cores. barnes displays a very strong correlation
between barrier synchronization and variation in power con-
sumption. For instance, as cores start to reach the first barrier,
there is a gradual decrease in power consumption. When the
barrier is exited, power consumption spikes, likely leading
to a voltage emergency. Later barriers are entered a lot more
rapidly by all threads, which causes sharp drops in power
consumption, followed by spikes when they are released.

3.3. Other Voltage Droop-Causing Events

A condition signal broadcast has the potential to wake
up many waiting threads simultaneously. We treat this as a
special case of barrier synchronization, although none of our
workloads have demonstrated this problem.

Lock synchronization does not generally cause the type
of activity coordination that can lead to large power fluctu-
ations. Even if a large number of threads are contending
for a lock, they will acquire it sequentially, thus avoiding
the activity spike typical for barriers. In our workloads we
did not observe any emergencies that could be attributable
directly to lock activity.

In addition to synchronization, some thread management
functions can lead to large activity variation in parallel ap-
plications. These applications often create a set of worker
threads during initialization, which are usually launched all
at once. In this case, thread spawning can have an effect

similar to barrier exit.
Active power management such as clock or power-gating

can significantly reduce power consumption of idle threads.
This can make voltage droops worse because the power
fluctuation when transitioning into active state will generally
be higher than if power management was not employed.

4. VRSync Design and Implementation

In order to eliminate synchronization induced voltage
emergencies we develop VRSync, a novel synchronization
methodology that controls core activity while in barriers and
during barrier exit. We also apply VRSync to control the
timing of thread spawning at the OS level.

4.1. Barrier Implementation

To reduce cache coherence traffic, we use a hierarchical
barrier based on a binary software combining tree [20, 28].
In our implementation, a node is dynamically assigned to
each participating thread. Each node has a sense flag that
only its children observe while blocked on the barrier. The
last thread to enter the barrier is assigned to the root node, at
which time it inverts its sense flag to release waiting threads.
Its children observe this and invert their sense flags, propa-
gating this wake-up signal down the tree and releasing all
threads from the barrier. The barrier tree is implemented
as a one-dimensional array indexed by node numbers. This
allows threads to locate their assigned node data structures
in constant time, without traversing the tree. Array elements
(including the sense flag variables) are allocated such that
they will map to different cache lines, to avoid false sharing.

Threads are assigned nodes based on the order they enter
the barrier (from highest numbered node to lowest). Node
numbers are computed from a shared variable c, which is
atomically incremented by each thread, starting from zero.
Given a node number i, its parent node is p = b(i− 1)/2c,
its left child is l = 2i+ 1, and its right child is r = 2i+ 2.
With n cores participating in the barrier, i = n− 1− c, so
that for 32 cores, the first to enter the barrier is assigned node
i = 31 and the last one is assigned node i = 0.
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4.2. Scheduled Barrier Exit

VRSync implements a scheduled barrier exit to prevent
the high current surges associated with barrier release. The
schedule ramps up thread activity more slowly, leading to
a more gradual rate of increase in power consumption. In
VRSync threads participate in the barrier in two phases. The
first is the blocked phase, prior to the time when all threads
have arrived at the barrier. Cores assigned to blocked threads
sleep or busy-wait in a way that minimizes power. Once all
threads have arrived, threads enter the delayed phase. Cores
assigned delayed threads continue to sleep until a thread-
local timer has expired. We examine two exit schedules
(Linear and Bulk) that control the pattern and rate at which
cores are allowed to leave the delayed phase.

4.2.1 Linear Exit Schedule

The Linear schedule simply adds a fixed progressive delay
to the wake-up of each thread that participates in a barrier.
Figure 5(a) shows an example of the Linear exit schedule
for 8 threads participating in two barriers. The first barrier
phase proceeds as in a regular barrier. However, when the
last thread reaches the barrier, all threads are released from
the blocked phase (essentially clearing the barrier) and move
into the delayed phase. The threads are scheduled to exit the
delayed phase in the reverse order of their arrival. This is
done as an optimization, to ensure that critical threads (those
that arrive last at the barrier) will be released first. The
assumption is that these threads are likely to remain critical
for subsequent barriers, and giving them higher exit priority
should improve performance. In Figure 5(a), thread T0 is
the last to arrive at the first barrier and will be the first one
to leave. The release of the rest of the threads is delayed by
a delay unit relative to the release of the previous thread.
The value of the delay unit is conservatively chosen to be
the minimum the processor can tolerate without experiencing
an emergency under worse-case load conditions.

Figure 5(c) illustrates the effect of the Linear schedule on
the stability of the output voltage for a 32-core processor. It
shows the output voltage over time, as cores are gradually
turned on. This experiment assumes cores are initially off
and will consume maximum power when on, although in
reality, the power increase will be less. The Linear schedule
gradually ramps up demand on the voltage regulator, which
keeps the voltage droop above the safe margin of ±10%.
A more rapid ramp-up in demand would trigger a response
similar to that in Figure 1(b), leading to an emergency.

4.2.2 Bulk Exit Schedule

The Linear barrier exit schedule is relatively easy to test
and implement. However, because voltage regulators have
a non-linear response to transient workloads, it might be

suboptimal. The speed of the regulator response depends on
a number of factors including the quality of the control loop
and the size of inductors and capacitors. The VR responds
to a voltage droop by “pumping” additional current into the
processor. The response however is not instantaneous. If the
VR is given some time to catch up with the new demand, it
might be able to respond faster to subsequent load increases.

We take advantage of the VR non-linearity with an alter-
native barrier exit schedule, called Bulk, which provides a
faster exit compared to Linear. In the Bulk schedule, cores
are released from the barrier in batches rather than one at a
time. After a batch of cores is released, the VR is given some
time to respond, followed by another batch, until all cores
have exited the delayed phase of the barrier. Figure 5(b)
shows an example with 8 threads leaving a barrier on the
Bulk schedule. Figure 5(d) illustrates the VR response to a
Bulk release of six cores at a time for a 32-core chip. Com-
paring Figures 5(c) and 5(d) we can see that the initial droop
for the Bulk schedule is steeper but shorter, so it doesn’t
trigger an emergency. Because the load change is abrupt the
VR responds aggressively to raise the voltage, which allows
a second batch of six cores to be released without causing an
emergency. Overall, the Bulk exit schedule completes about
20% faster than the Linear schedule for the same load.

4.3. Early Exit in Overlapping Barriers

Some applications make very heavy use of barrier syn-
chronization, and their runtime could be hurt substantially by
the delayed exit schedules. In heavily synchronized applica-
tions, barriers are often very closely spaced, with only a few
instructions between them. As a result it is not uncommon
for barriers to be “overlapping,” with some threads exiting
one barrier and entering a second before other threads have
exited the first. VRSync makes overlapping barriers more
likely because of the unequal delay it introduces in the exit
time of each thread. A thread that enters the second barrier
will rapidly go into a lower power state, reducing the load
on the regulator. In this case, the scheduled barrier exit is
unnecessarily conservative because it assumes all cores will
consume peak power until the scheduled exit is complete. To
eliminate the unnecessary overhead we would like to allow
threads to exit the delayed phase of the barrier early. For
instance, when a thread goes to block on the second barrier
it could signal to another delayed thread that it can leave its
delayed phase early.

Figure 6(a) shows an example of early exit applied to
the Linear schedule. In this example thread T0 is last to
reach the first barrier at time t1 and will therefore be the
first scheduled to exit. When T0 enters the second barrier
at time t2 it will trigger the early exit of thread T7 at time
t3. If there were no barrier overlap, T7 would have stayed
in the delayed phase of the barrier until time t5. The same
pattern repeats until all threads exit the first barrier. This

253



First enter
Execution

Blocked on barrier 1 Delay

Blocked on barrier 2 Delay

All in barrier 1
All in barrier 2

T0

T7

Linear schedule

t7

T1
T2
T3
T4
T5
T6

Time

Th
re

ad
s

(a) Linear exit schedule

First enter
Execution

Blocked on barrier 1
All in barrier

Delay

All out
T0

T7

Th
re

ad
s

T1
T2
T3
T4
T5
T6

Time

(b) Bulk exit schedule

0 50 100 150 200 250 300
400

450

500

550

600

650

700

 

 V(out)
 No. of  active cores

-10%

V
(o

ut
) (

m
V

)

time (µs)

0
4
8
12
16
20
24
28
32
36

 N
o.

 o
f  

ac
tiv

e 
co

re
s

(c) VR response to Linear exit

0 50 100 150 200 250 300
400

450

500

550

600

650

700

 

 V(out)
 No. of active cores

-10%

time (µs)

V
(o

ut
) (

m
V

)

0
4
8
12
16
20
24
28
32
36

 N
o.

 o
f a

ct
iv

e 
co

re
s

(d) VR response to Bulk exit

Figure 5: Timing diagrams and VR response to the Linear exit schedule (a), (c) and the Bulk exit schedule (b), (d).

occurs much earlier (t4) than the linear exit schedule would
have dictated (t5).

To implement the early exit schedule we add an
early wake variable to each node in the barrier tree. A
thread entering the barrier will set this flag. If another thread
is in the delayed phase on the same node, it will detect this
flag change and exit immediately. Figure 6(b) shows the
state of the barrier tree for the example in Figure 6(a), at
time t3. At that time, thread T0 has left the first barrier,
arrived at the second barrier and been assigned to node 7.
Before T0 goes into the blocked state, it wakes up thread T7,
which was in delayed state at node 7. T7 goes on to block
on node 6, waking up T6. At time t3, threads T2 through T5
are in the delayed phase of the first barrier on nodes 2 to 5.
Threads T1 and T6 are in execution between the two barriers
and do not occupy any node in the tree at time t3.

4.4. VRSync Implementation

VRSync is implemented as a user-level library that
provides emergency-free synchronization and is installed
system-wide. To implement the scheduled exit, VRSync re-
quires a core-local timestamp, such as a cycle counter, which
is used to wake from the delayed barrier phase. The wake
time is calculated, and a spin-wait executes until that time is
reached. To implement spin-wait in a power-efficient manner
the library uses a PAUSE instruction, like what was introduced

to x86 processors in the SSE2 instruction set. On a PAUSE

instruction, the CPU front-end inserts a long delay before
fetching the next instruction, thereby significantly reducing
the IPC and dynamic power of the core.

4.4.1 OS-Level VRSync

An OS-level VRSync implementation is also needed to pre-
vent emergencies that can be caused by thread spawning or
non-VRSync synchronization. These events involve OS inter-
action and must therefore be handled at OS-level. In essence,
the OS must ensure that emergencies are not triggered when
work is scheduled to cores that have been previously idle or
sleeping. New work is assigned to idle cores by issuing an
interrupt to these cores. The interrupt can come from another
thread (spawn) or from a hardware device (I/O). VRSync aug-
ments this mechanism by scheduling core wake-up according
to the Linear or Bulk schedules, avoiding emergencies.

The same OS-level implementation ensures that applica-
tions using standard synchronization instead of the VRSync
library will not trigger voltage emergencies. Most barrier
primitives use blocking calls handled by the OS. When
threads are released from a standard barrier, they appear
to the OS as core-wakeup events. Since these are scheduled
by the OS-level VRSync, they will not cause emergencies.
However, users will have an incentive to use the VRSync
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Figure 6: Example of early exit from the Linear schedule due to overlapping barriers.

library instead of standard synchronization for performance
reasons. The OS implementation of VRSync has a higher
overhead than the library, and it cannot take advantage of
performance optimizations like early exit for overlapping
barriers. As we show in Section 6, these optimizations can
reduce the overhead of VRSync by as much as 25×.

4.4.2 VRSync Design Parameters

The parameters chosen for the Linear and Bulk exit sched-
ules of VRSync are dependent on the regulator design, size
of capacitors, number of regulator phases, etc. They are also
dependent on the desired safety margins and the power char-
acteristics of the cores. These parameters would therefore
need to be determined by processor manufacturers. Since
processors and voltage regulators are often developed by
different manufacturers, data from regulator data sheets or
manufacturer-supplied models can be used to perform the
necessary design-time simulations. Once the parameters are
chosen, they can be programmed in the system firmware and
accessed by the synchronization libraries.

To determine these design parameters, we simulate a com-
mercial regulator from Linear Technologies [17] using LT-
spice [18]. We measure regulator response to load changes,
assuming worst-case power consumption for each core. For
the Linear schedule, multiple simulations are run with differ-
ent delay values until the minimum value that does not cause
an emergency is found. Similarly, for Bulk we determine the
optimal number of cores that can be released together and
the delay between bulk exits.

5. Evaluation Methodology
5.1. Architectural Simulation Setup

Most of our experiments are conducted on a simulated
32-core CMP in 32nm technology using SESC [27]. Each
core is a dual-issue out-of-order architecture. SESC was
modified to run a port of the LinuxThreads library, a simple
implementation of POSIX Threads required by the PARSEC

CMP architecture
Cores 32, out-of-order
Fetch/issue/commit width 2/2/2
Register file size 76 int, 56 fp
Instruction window 56 int, 24 fp
L1 data cache 4-way 16KB, 2-cycle
L1 instruction cache 2-way 16KB, 2-cycle
Private L2 8-way 256KB, 10-cycle
NoC Interconnect 2D Torus
Coherence L2-level, MESI
Technology 22nm
Vdd 600mV
Clock Frequency 1GHz

Table 1: Summary of the experimental parameters.

benchmarks. We collected runtime and energy information.
Table 1 summarizes the architecture configuration.

We ran the PARSEC benchmarks blackscholes, body-
track, fluidanimate, swaptions, dedup, and streamcluster and
the SPLASH2 benchmarks barnes, cholesky, fft, lu, ocean,
radiosity, radix, raytrace, and water-nsquared with the sim-
small and reference input sets, respectively. The benchmark
sets include applications with light, moderate and very heavy
barrier activity as well as applications that use no barriers.
Most applications use at least some lock synchronization
and some of the PARSEC benchmarks use condition waits.

To model power consumption at low voltage we used the
models from Markovic̀ et al. [19]. These were integrated
into CACTI [23] to extract energy per access for all the
SRAM memory structures including register file, caches, etc.
The low voltage models were also used to scale the existing
SESC power model for logic units. To model NoC power
we used Orion 2 [14].

5.2. Voltage Regulator Simulation Setup

To measure the voltage regulator’s response to load, we
used Linear Technology’s LTC3729L-6 polyphase, syn-
chronous step-down switching regulator [17]. This is a
commercially-available regulator intended for use in desk-
tops and servers. The regulator’s response is simulated in
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Figure 7: Diagram of the voltage regulator circuit design (two of
the six phases).

LTspice IV [18] using a model provided by the manufac-
turer. We set up the LTC3729L-6 in a 6 phase design, which
requires 3 LTC3729L-6 chips with 12 onboard capacitors
of 270 µF each and a combined ESR of 2 mOhms. The
controllers are synchronized using the CLKOUT pin of the
first chip. Figure 7 shows the circuit diagram for two of the
regulator phases. The input voltage was set at 12V and the
output voltage set at 600mV by means of a resistor divider
circuit using remotely sensed output voltage. The regulator
configuration and capacitor values were chosen to provide
the maximum current required (160 Amps) for low-voltage
operation, in line with Intel specifications [10]. The regulator
drives a current sink that models the processor load.

The current traces obtained from the SESC simulator
were fed into the regulator to measure its response to a wide
range of load steps and various load slews. We measured the
regulator response to a sweep of current changes and iden-
tified the maximum rate at which load can change without
causing an emergency (Max dI/dt). We define a voltage
emergency as occurring if the output voltage droops below
10% of the target voltage. While this margin is consistent
with industry practices and previous work, it is the result of a
tradeoff between power consumption goals, component (e.g.
capacitors, controllers) cost and size, etc.

We use Max dI/dt to identify emergencies in the power
consumption profile extracted from the microarchitectural
simulator. Changes in current that exceed Max dI/dt are
flagged as emergencies. Parameters for the Linear and Bulk
exit schedules are determined using VR simulations, based
on the worst-case assumption that cores switch from zero
to maximum power when they transition from idle to active
states. Once delay schedules are determined, they are pro-
grammed into our VRSync implementation in the simulator.

6. Evaluation

In this section we analyze the incidence of voltage emer-
gencies across different multi-threaded applications and the
effectiveness of VRSync at eliminating them. We also eval-

uate the impact of the VRSync Linear and Bulk policies on
execution time and energy.

The evaluation includes two baseline systems. The more
conservative baseline uses no active power management,
meaning that when blocked on a barrier, threads will simply
issue a PAUSE instruction that will reduce the IPC and power
of the busy-wait loop. The second baseline employs active
power management through clock-gating at core level. When
blocked, threads execute a HALT instruction, which cuts the
core’s dynamic power.

6.1. Voltage Emergencies

We analyze power traces obtained from simulator runs to
identify voltage emergencies. These are defined as voltage
droops larger than 10%, which would be triggered by current
changes that exceed Max dI/dt. Table 2 shows the results
of this study. For each benchmark we show both the number
of dynamic barriers and the number of emergencies for the
two baseline runs. In general, the number of emergencies
correlates very well with the number of barriers. For in-
stance ocean has a very large number of barriers and also
experiences the largest number of voltage emergencies. This
correlation however doesn’t always hold. streamcluster has
extremely heavy barrier activity, yet it registers no emergen-
cies. This is likely due to the fact that streamcluster has
relatively low IPC and low maximum power consumption.
As a result, when threads exit from barriers their activity
does not increase sufficiently to cause emergencies.

Table 2 also shows the number of emergencies that occur
in the baseline system that uses clock gating. The number of
emergencies increases for most benchmarks because cores
idle with lower power while blocked at a barrier, leading
to higher power spikes upon exit. For ocean the number of
emergencies increases by almost 30%.

6.1.1 Eliminating Emergencies with VRSync

Figure 8(a) shows an example of a barrier that leads to an
emergency in fluidanimate. We show power consumption
over time, the number of threads in a barrier at any given
time and the location of emergencies (red arrow, at the top
of the graph). We can see that as threads enter the barrier,
power consumption gradually drops, followed by a big spike
upon exit. Soon after, threads enter a second barrier, but this
one does not lead to an emergency.

Figure 8(b) shows the effect of the Linear schedule on
the same section of the benchmark. This schedule leads to a
more gradual resumption of compute activity, which elimi-
nates the emergency. This example illustrates the effects of
the overlapping barrier optimization which allows early exit
from the first barrier as threads enter the second one.

Figure 8(c) shows the effects of the Bulk schedule on the
same code. We can see that the exit from the barrier now
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Benchmark Num. of
Number of emergencies

Baseline
Baseline w/ VRSync VRSync

barriers clock gating Linear Bulk
radiosity 10 0 1 0 0
barnes 17 0 0 0 0
ocean 900 419 543 0 0
raytrace 1 0 0 0 0
water-nsq’d 20 7 10 0 0
cholesky 4 0 0 0 0
fft 7 8 8 0 0
lu 67 50 56 0 0
radix 11 2 3 0 0
blackscholes 1 0 0 0 0
bodytrack 80 0 0 0 0
fluidanimate 24 9 10 0 0
swaptions 0 9 9 0 0
dedup 0 0 0 0 0
streamcluster 4396 0 0 0 0

Table 2: Number of barriers and number of emergencies for the
baseline system, the baseline with clock gating and for VRSync
Linear and Bulk. VRSync eliminates all emergencies for clock-gated
and non-clock-gated cases.

occurs in batches of threads, leading to a step-wise, but still
gradual ramp-up in power. Again, the emergency is avoided.
The Bulk exit is also faster than the Linear one, but both are
slower than the baseline.

Figure 9 shows the power profiles for lu, fft and swaptions.
Figure 9(a) shows lu running on the baseline with no clock
gating. For lu, emergencies are perfectly correlated with
barrier exits. Because of high activity following the barriers,
almost all barrier exits lead to emergencies. Figure 9(d)
shows that the Bulk schedule eliminates all emergencies with
a slight increase in execution time.

In some cases, program phases can remain highly synchro-
nized long after the synchronization event has completed.
This occurs in parallel workloads with very balanced work-
load distribution across threads. An example of this behavior
can be seen in Figure 9(b), which shows power consumption
for fft. This workload is characterized by alternating periods
of high and low IPC (due to phases of low and high last-level
cache misses), and these periods occur nearly simultaneously
across all threads, even though no synchronization is present.
These synchronous fluctuations lead to multiple emergencies.
Figure 9(e) shows how the Linear exit schedule significantly
diminishes these power fluctuations. This happens because
the Linear release schedule realigns threads relative to each
other leading to less overlap in the high and low activity
phases, completely eliminating emergencies from fft.

All emergencies in swaptions are caused by simultaneous
spawning of large numbers of threads. Figure 9(c) shows a
short section of the application startup. Several emergencies
occur early on in the execution. All of these are eliminated
by the VRSync scheduled thread spawn as Figure 9(f) shows.

Benchmark Linear
No overlap

Bulk
No overlap

Linear Bulk
ocean 1.62 3.36 1.50 2.96
streamcluster 2.10 24.90 1.36 16.75
g.mean (all) 1.11 1.39 1.06 1.35

Table 3: Runtimes (relative to baseline) for ocean, streamcluster,
and the geometric mean over all benchmarks for VRSync with and
without the early exit in overlapping barriers optimization.

6.2. VRSync Impact on Execution Time

VRSync delayed exit can impact execution time because
it forces threads to spend additional time in barriers. Figure
10 shows the execution time of all benchmarks for the Lin-
ear and Bulk exit schedules with and without the early exit
optimization.

As expected, the Linear schedule has the highest over-
head, with an average increase in execution time of 11%
across all the benchmarks. Applications that have moderate
to no barrier activity have very small increase in runtime,
between 0 and 10%. fft is an exception because, even though
it has few barriers, its runtime is very short, making barrier
exit schedules a significant fraction of its runtime.

Applications with heavy barrier activity suffer signifi-
cantly more from VRSync. Streamcluster has by far the
highest overhead, with a 2.1× increase in execution time.
The high overhead is due to the very large number of barri-
ers (4396) used by this benchmark. ocean has the second
highest overhead (62%), again because of the large number
of barriers (900).

The Bulk schedule reduces the average execution time
overhead to 6.3%. Streamcluster shows a dramatic improve-
ment with just over 36% overhead compared to 100% with
the Linear schedule. This is due to the interplay between the
exit schedule and the early exit optimization. The Bulk sched-
ule releases multiple threads right at the barrier exit, which
quickly reach a new barrier, triggering early exit sooner than
in the Linear case. Overlapping barriers with early exit are
very common in streamcluster.

The early exit optimization has a very big impact on the
performance of VRSync in benchmarks with large numbers
of barriers. As Table 3 shows, without early exit, the runtime
overhead would be as high as 3.36× for ocean and as high
as 24.9× for streamcluster. The average runtime overhead
for Bulk without early exit would be close to 35% instead of
6.3% with early exit.

Barnes, raytrace, and dedup actually speed up slightly.
When parallel tasks simultaneously go through periods of
high memory activity, they compete for memory bandwidth
and slow each other down. VRSync shifts the alignment of
those phases, reducing competition for shared resources and
making execution more efficient.
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(c)

Figure 8: Power variation in response to synchronization for two barriers from fluidanimate: (a) baseline without clock gating (b) Linear
barrier exit schedule and (c) Bulk exit schedule.
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(a) lu, baseline
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(c) swaptions, baseline
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(e) fft, Linear

P
o
w

er
 (

W
at

ts
)

C
o
re

s 
in

 B
ar

ri
er

Time (milliseconds)

Emergency
Cores in Barrier

Power (Watts)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 8

 16

 24

 32

(f) swaptions, Bulk thread spawn

Figure 9: Power profile for lu, fft and swaptions for the baseline without clock gating (a), (b), (c), for the Bulk (d), and Linear (e) schedules,
and for scheduled spawn only (f).

6.3. VRSync Energy

We examine the energy implications of using VRSync ver-
sus other options for avoiding voltage emergencies. Table 4
summarizes the results. Each entry in the table shows the av-
erage runtime, power and energy for the different techniques
relative to a baseline without clock gating. Because the base-
line has no barrier exit scheduling and a small guardband, it
cannot avoid emergencies.

Another option for eliminating voltage emergencies is to
increase the voltage guardband, while using faster versions
of VRSync. Bulk 160mV shows a combination of higher
guardband with the Bulk scheduling policy. The voltage
guardband for this option increases from 60mV to 160mV .
This allows for a faster exit schedule that the regular Bulk

Technique Guard. Sched. Emerg. Runtime Power Energy
Baseline 60mV None yes 1.0 1.0 1.0
VRSync 60mV Linear no 1.112 0.98 1.086
VRSync 60mV Bulk no 1.063 0.99 1.049
Bulk 160mV 160mV Bulk no 1.045 1.361 1.422
Optimistic

210mV None no 1.0 1.563 1.563
guardband

Table 4: The effects of different guardbands on average benchmark
execution time, power, energy, and emergencies.

schedule, reducing the runtime overhead. However, because
the supply voltage is higher, energy consumption increases
by 42%. Note that even with the higher guardband VRSync
is still needed to guarantee emergency-free execution.

We also define a guardband-only option, which we call
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Figure 10: VRSync execution times for Linear and Bulk schedules, normalized to baseline.

Optimistic guardband, based on our workloads. We identi-
fied the steepest dI/dt of any of our benchmarks and deter-
mined the necessary safe voltage guardband to avoid emer-
gencies without VRSync. The Optimistic guardband case
would increase energy by 56% over baseline.

From the summary in Table 4 we can see that the most
energy efficient option for avoiding voltage emergencies
is VRSync Bulk with only 4.9% increase in energy over a
baseline with emergencies. This solution also uses only 67%
of the energy of a CMP that uses only voltage guardbanding
to eliminate voltage emergencies.

7. Related Work
Prior work has focused on addressing voltage emergen-

cies in low core count systems. Reddi et al. [25] proposed
a solution for eliminating emergencies in single-core CPUs.
They employ heuristics and a learning mechanism to predict
voltage emergencies from architectural events. When an
emergency is predicted, execution rate is throttled, reducing
the slope of current changes. Gupta et al. [7] proposed an
event guided adaptive voltage emergency avoidance scheme:
Recurring emergencies are avoided by initiating various
operations such as pseudo-nops, prefetching, and a hard-
ware throttling mechanism on events that cause emergencies.
Gupta et al. also proposed DeCoR [6], a checkpoint/rollback
solution which allows voltage emergencies but delays the
commit of instructions until they are considered safe. A low
voltage sensor, of known delay, signals that an emergency
is likely to have occurred and the pipeline is flushed and
rolled back to a safe state. Powell and Vijaykumar [24]
proposed two approaches for reducing high-frequency in-
ductive noise caused by processor pipeline activity. Pipeline
muffling reduces the number of functional units switching
at any given time by controlling instruction issue. A priori
current ramping slowly ramps up the current of functional
units before they are utilized in order to reduce the amplitude
of the current surge.

A software approach to mitigating voltage emergencies
was proposed by Gupta et al. in [5]. They observe that a few
loops in SPEC benchmarks are responsible for the majority

of emergencies in superscalar processors. Their solution
involves a set of compiler-based optimizations that reduce or
eliminate architectural events likely to lead to emergencies
such as cache or TLB misses and other long-latency stalls.

Very few previous studies have examined voltage emer-
gencies in multicore chips. Gupta et al. [4] characterize
within-die voltage variation using a detailed distributed
model of the on-chip power-supply grid. They model a
4-core CMP and use a multi-programmed workload con-
sisting of SPEC applications in their evaluation. Reddi et
al. [26] evaluate voltage droops in an existing dual-core mi-
croprocessor. They propose designing voltage margins for
typical instead of worst-case behavior, relying on resilience
mechanisms to recover from occasional errors. They also
propose co-scheduling threads with complementary noise
behavior, to reduce voltage droops.

We are not aware of any previous work that examines
voltage emergencies in CMPs with large numbers of cores
running multithreaded applications. In this work we show
that as the number of cores increases the effects of chip-
wide activity variation are likely to overshadow core-level
workload variability addressed in prior work.

A significant amount of recent work has demonstrated
dramatic power savings from low voltage operation. These
works aggressively scale supply voltage to very close to the
threshold voltage [2, 3, 19, 22, 21]. In general, two orders
of magnitude power savings are possible with an order of
magnitude reduction in frequency. Overall the technology
promises an order of magnitude reduction in energy. Many
challenges remain, including reliability and high variation.
Low voltage operation requires a significant reduction in
voltage margins that can only be achieved if effective tech-
niques for reducing voltage droops are developed.

8. Conclusion and Future Work
Market and technology factors are driving CPU architects

to employ increasingly aggressive energy and power-saving
design techniques. Lowering supply voltage makes chips
more susceptible to the effects of severe supply voltage fluc-
tuations, which can lead to errors. In this paper we identify
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an important problem that will challenge future low-voltage
CMPs. We show that in large systems, voltage emergencies
will be caused in large part by coordinated activities in which
multiple cores experience sudden changes in compute de-
mand simultaneously. We propose a set of low overhead and
highly effective techniques for mitigating these challenges.

We hope this paper will inspire future research on this
topic. One aspect we would like to address is the impact of
multiple voltage domains on voltage emergencies. Future
CMPs with hundreds of cores are likely to have cores orga-
nized into clusters, with each cluster receiving an indepen-
dently regulated voltage supply. Voltage droops caused by
cross-domain workload migration and other aspects related
to multiple voltage domains will have to be investigated.

In this work we showed that clock gating can be a signif-
icant source of voltage droops. In future work we will in-
vestigate the impact of other power management techniques,
such as core-level power gating, on voltage stability.
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