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ABSTRACT
Reducing tra!c accidents is an important public safety challenge,
therefore, accident analysis and prediction has been a topic of much
research over the past few decades. Using small-scale datasets with
limited coverage, being dependent on extensive set of data, and
being not applicable for real-time purposes are the important short-
comings of the existing studies. To address these challenges, we
propose a new solution for real-time tra!c accident prediction
using easy-to-obtain, but sparse data. Our solution relies on a deep-
neural-network model (which we have named DAP, for Deep Acci-
dent Prediction); which utilizes a variety of data attributes such as
tra!c events,weather data, points-of-interest, and time. DAP incorpo-
rates multiple components including a recurrent (for time-sensitive
data), a fully connected (for time-insensitive data), and a trainable
embedding component (to capture spatial heterogeneity). To "ll the
data gap, we have - through a comprehensive process of data collec-
tion, integration, and augmentation - created a large-scale publicly
available database of accident information named US-Accidents. By
employing the US-Accidents dataset and through an extensive set
of experiments across several large cities, we have evaluated our
proposal against several baselines. Our analysis and results show
signi"cant improvements to predict rare accident events. Further,
we have shown the impact of tra!c information, time, and points-
of-interest data for real-time accident prediction.

CCS CONCEPTS
• Theory of computation → Data integration; • Computing
methodologies→ Supervised learning by classi!cation; •Ap-
plied computing → Transportation.
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1 INTRODUCTION
Reducing tra!c accidents is an important public safety challenge
around the world. A global status report on tra!c safety [28] notes
that there were 1.25 million tra!c deaths in 2013 alone, with deaths
increasing in 68 countries when compared to 2010. Accident predic-
tion is important for optimizing public transportation, enabling safer
routes, and cost-e#ectively improving the transportation infrastruc-
ture, all in order to make the roads safer. Given its signi"cance,
accident analysis and prediction has been a topic of much research
in the past few decades. Analyzing the impact of environmental
stimuli (e.g., road-network properties, weather, and tra!c) on tra!c
accident occurrence patterns [10, 15, 30], predicting frequency of
accidents within a geographical region [3, 6, 23, 29, 36], and predict-
ing risk of accidents [8, 18, 35, 37] are the major related research
categories.

Employing small-scaled datasets with limited coverage (e.g. a
small number of road-segments, or just one city) [3, 5, 6, 18, 35];
being dependent on a wide range of data attributes which may not
be available for all regions (e.g., satellite imagery, tra!c volume, and
properties of road-network) [23, 36, 37]; being not applicable for
real-time applications regarding the modeling constraints and pre-
requisites (e.g., prediction for longer time intervals such as one day
or one week, or requiring extensive set of data) [3, 23, 29, 36]; and
employing over simpli"ed methods for tra!c accident prediction
[3, 13, 18] are the main shortcomings of the existing studies.

To address these challenges and provide a reasonable solution for
real-time tra!c accident prediction, we propose DAP, a deep-neural-
network-based accident prediction model. DAP uses a variety of
data including tra!c events (e.g., congestion, construction, and road
hazards), weather (e.g., temperature, visibility, and wind speed),
points-of-interest (e.g., tra!c signal, stop sign, and junction), and
time (e.g., day of week, hour of day, and period of day) to provide
real-time prediction for a geographical region of reasonable size (i.e.,
a square of size 5km × 5km on map) and during a "ne-grained time
period (i.e., a 15 minutes interval). To our knowledge, this is the
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"rst research work that has employed tra!c events and points-of-
interest data for accident prediction. DAP exerts multiple important
components to utilize di#erent categories of attributes. To utilize
time-sensitive data (e.g., tra!c, weather, and time data), DAP em-
ploys a recurrent component with Long Short TermMemory (LSTM)
cells. To utilize time-insensitive data (e.g., points-of-interest), DAP
employs feed-forward neural network layers. Further, to better cap-
ture spatial heterogeneity, which has been proven to be e#ective for
accident prediction [37], DAP employs trainable latent representa-
tion for each geographical region to encode essential spatiotemporal
information.

In order to mitigate the impact of data size on analysis and pre-
diction, we present a new dataset, we name it US-Accidents, which
includes about 2.25 million tra!c accidents took place within the
contiguous United States1, between February 2016 and March 2019.
US-Accidents o#ers a wide range of data attributes to describe each
accident including location data, time data, natural language descrip-
tion of event, weather data, period-of-day information2, and relevant
points-of-interest data. Importantly, we also present our process for
creating the above dataset from streaming tra!c reports and hetero-
geneous contextual data (weather, points-of-interests, etc.), so that
the community can validate it, and with the belief that this process
can itself serve as a model for dataset creation. We performed a
variety of data analysis and pro"ling based on US-Accidents dataset
to derive a wide-range of insights. Our analyses demonstrated that
about 40% of accidents took place on or near high-speed roadways
(highways, interstates, etc.) and about 32% on or near local roads
(streets, avenues, etc.). We also derived various insights with respect
to the correlation of accidents with time, points-of-interest, and
weather conditions.

Using US-Accidents, and through extensive experiments across
several large cities, we compared our proposal against several neural-
network-based and traditional machine learning models (such as
logistic regression and gradient boosting classi"er). Our analysis and
results show the superiority of our model in terms of improvement
of f 1-score for the case of positive examples (i.e., cases which la-
beled as accident), by about 16% in comparison to the best traditional
model, and about 7% in comparison to the best neural-network-
based model. When considering both positive and negative cases
(negative cases are labeled as non-accident, which are the majority),
our proposal achieves comparable results when compared to the
best baselines. Nevertheless, we note that positive cases are far more
important, regarding their rare nature, and importance to be prop-
erly predicted. Further, we conducted thorough analyses to assess
the ability of di#erent categories of attributes for real-time tra!c
accident prediction using multiple testing scenarios. Our "ndings
indicate the importance of time, points-of-interest, and tra!c data
for this task.

The main contributions of this paper are therefore as follows.

• A new methodology for heterogeneous data collection, cleans-
ing, and augmentation to prepare a unique, large-scale dataset
of tra!c accidents. This dataset has been collected for the con-
tiguous United States over three years, and contains 2.25 million
tra!c accidents. The dataset is publicly available for the research
community at https://smoosavi.org/datasets/us_accidents.

• A variety of insights gleaned through analyses of accident hot-
spot locations, time, weather and points-of-interest correlations

1The contiguous United States excludes Alaska and Hawaii, and considers District of
Columbia (DC) as a separate state.
2Period-of-day is associated with daylight, thus it is represented as “day” or “night”.

with the accident data. These insights may directly be utilized
for applications such as urban planning, exploring %aws in trans-
portation infrastructure design, tra!c control and prediction, and
personalized insurance.

• A new deep-neural-network-based solution for tra!c accident
prediction using heterogeneous sparse data. To the best of our
knowledge, this is the "rst work which uses information from
tra!c "ow, fused with other available sources of contextual data
such as “weather” and “points-of-interest”, to perform accident
prediction. Furthermore, our methodology predicts future acci-
dents at the "ne-grained time interval of 15 minutes.

For the rest of this paper, we "rst provide preliminaries in Sec-
tion 3. The overview of related work is discussed in Section 2. Sec-
tion 4 describes the dataset construction process and the resulting
dataset. The accident prediction framework is presented in Section 5,
followed by experiments and results in Section 6. Finally, Section 7
concludes the paper.

2 RELATEDWORK
Accident analysis and prediction has been the topic of many re-
search during the past few decades, where we study three categories
of these work as follows.

Analysis of Environmental Stimuli on Accidents. This cate-
gory of work investigates the impact of environmental stimuli (e.g.,
weather, tra!c %ow, and properties of road-network) on possibil-
ity or severity of tra!c accidents. Studying the impact of weather
factors (e.g., precipitation) on road accidents [10, 15, 30, 31]; apply-
ing data mining techniques to extract association rules to perform
causality analysis [1, 17]; and statistical analysis of unobserved
heterogeneity to explore the impact of unavailable variables (e.g.,
missing data) on severity of tra!c accidents [19] are some examples
of this category. These studies usually provide signi"cant insights,
however, may not be directly utilized for real-time prediction and
planning.

Accident Frequency Prediction. Prediction of the expected num-
ber of tra!c accidents for a speci"c road-segment or geographical
region is the target of this group of studies [6]. Early work in this
area by Chang et al. [5] used information such as road geometry,
annual average daily tra!c (AADT), and weather data to predict
the frequency of accidents for a highway using a neural network
model. Caliendo et al. [3] used a set of road-related attributes such
as length, curvature, AADT, sight distance, and presence of junction
to predict frequency of accidents. The usage of satellite imagery
to predict the frequency of accidents by a convolutional neural
network model using large scale accident and imagery data was
proposed by Najjar et al. [23]. Further, Ren et al. [29] recently used
a Long Short Term Memory (LSTM) model to predict the frequency
of accidents, given the history of past 100 hours, for grid cells of
size 1km × 1km. Similarly, Chen et al. [7] proposed to use a stack
denoising convolutional autoencoder model to predict frequency
of accidents for grid cells using tra!c %ow (collected using plate
recognition systems), past tra!c accidents, and time data. Yuan et
al. [36] proposed hetero-ConvLSTM to predict frequency of tra!c
accidents using several sources of environmental data such as tra!c
volume, road condition, rainfall, temperature, and satellite images.
They evaluated their model using a large-scale data of tra!c ac-
cidents from state of Iowa, performed predictions for grid cells of
size 5km × 5km, and showed the importance of capturing spatial
heterogeneity and temporal trends to better predict tra!c accidents
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[36]. Studies in this category usually make use of many pieces of
information that may not be available in real-time applications.

Accident Risk Prediction. This category of work is very much
similar to the previous one, unless prediction here is de"ned as a
binary classi"cation task which better "ts real-time applications [35,
37]. Using data for a single segment of I-64 in Virginia (US), Lin et al.
[18] leveraged a decision tree model to separate pre-crash records
from normal ones, using information such as weather, visibility,
tra!c volume, speed, and occupancy information. However, their
limited size of data might weaken their solution or "ndings. In
another study Chen et al. [8] used human mobility data in terms
of 1.6 million GPS records and a set of 300,000 accident records in
Tokyo (Japan) to predict the possibility of accident occurrence on
grid cells of size 500m × 500m in an hourly basis. They leveraged a
stack denoising autoencoder model to extract latent features from
humanmobility, and then used a logistic regression model to predict
accidents. Finally, Yuan et al. [37] used a heterogeneous set of urban
data such as road characteristics (AADT, speed limit, etc.), radar-
based rainfall data, temperature data, and demographic data to
predict probability of accident for each road-segment in state of
Iowa. They leveraged eigen-analysis to capture and represent spatial
heterogeneity. Their analyses and results suggest the importance of
time, human factors, weather data, and road-network characteristics
for this task.

Our proposal belongs to the last category as we seek to perform
accident risk prediction. Further, our solution is more suitable for
real-time applications as we provide prediction for much shorter
time interval (i.e., 15 minutes) in comparison to literature. Besides,
our usage of real-time tra!c events and points-of-interest, to the
best of our knowledge, is not discussed before. Lastly, the type of
input data which we use for prediction is rather easy to collect and
available to public, in contrast to those work which used extensive
set of data for modeling and prediction.

3 PRELIMINARIES AND PROBLEM
STATEMENT

De!nition 3.1 (Tra!c Event). We de"ne a tra!c event e by e =
〈lat , lnд, time, type,desc〉, where lat and lnд represent the GPS co-
ordinates, type is a categorical classi"cation of the event, and desc
provides a natural language description of the event. A tra!c event
is one of the following types: accident, broken-vehicle, congestion,
construction, event, lane-blocked, and "ow-incident. Table 1 describes
these events.

Table 1: De!nition of Tra"c Events.

Type Description

Accident A collision event which may involve one or more vehicles.

Broken-vehicle
Refers to the situation when there is one
(or more) disabled vehicle(s) in a road.

Congestion
Refers to the situation when the speed of tra!c
is slower than the expected speed or speed-limit.

Construction Refers to maintenance project on a road.

Event
Situations such as sports event, demonstrations, or
concerts, that could potentially impact tra!c %ow.

Lane-blocked
Refers to the cases when we have blocked lane(s)

due to tra!c or weather condition.

Flow-incident
Refers to all other types of tra!c events.

Examples are broken tra!c light and animal in the road.

De!nition 3.2 (Weather Observation Record). A weather obser-
vation w is de"ned by w = 〈lat , lnд, time, temperature, humidity,
pressure,visibility,wind-speed,precip, rain, snow, f oд,hail〉. Here
lat and lnд represent the GPS coordinates of the weather station
which reportedw ; precip is the precipitation amount (if any); and
rain, snow, fog, and hail are binary indicators of these events.

De!nition 3.3 (Point-of-Interest). A point-of-interest p is de"ned
by p = 〈lat , lnд, type〉. Here, lat and lnд show the GPS latitude and
longitude coordinates, and available types for p are described in
Table 2. Note that several of de"nitions in this table are adopted
from https://wiki.openstreetmap.org.

Table 2:De!nition of Point-Of-Interest (POI) annotation tags based

on Open Street Map (OSM).

Type Description

Amenity
Refers to particular places such as restaurant,

library, college, bar, etc.
Bump Refers to speed bump or hump to reduce the speed.

Crossing
Refers to any crossing across roads for

pedestrians, cyclists, etc.
Give-way A sign on road which shows priority of passing.
Junction Refers to any highway ramp, exit, or entrance.

No-exit
Indicates there is no possibility to travel further

by any transport mode along a formal path or route.
Railway Indicates the presence of railways.

Roundabout Refers to a circular road junction.
Station Refers to public transportation station (bus, metro, etc.).
Stop Refers to stop sign.

Tra!c Calming Refers to any means for slowing down tra!c speed.
Tra!c Signal Refers to tra!c signal on intersections.

Turning Loop
Indicates a widened area of a highway with
a non-traversable island for turning around.

De!nition 3.4 (Geographical Region). We de"ne a geographical
region r as a square of size l × l over the map of a city. The choice of
l is related to application domain, and in this work we set l = 5km.

Given the preliminaries, we formulate the problem as follows:

Given:

– A spatial grid R = {r1, r2, . . . , rn }, where each r ∈ R is a
geographical region of size 5km × 5km.

– A set of "xed-length time intervals T = {t1, t2, . . . , tm },
where we set |t | = 15 minutes, for t ∈ T.

– A database of tra!c events Er = {e1, e2, . . . } for each geo-
graphical region r ∈ R.

– A database ofweather observation recordsWr = {w1,w2, . . . }

for each geographical region r ∈ R.
– A database of points of interest Pr = {p1,p2, . . . } for each
geographical region r ∈ R.

Create:
– A representation Fr t for a region r ∈ R during a time interval
t ∈ T, using Er ,Wr , and Pr .

– A binary label Lr t for Fr t , where 1 indicates at least one traf-
"c accident happened during t in region r , and 0 otherwise.

Find:
– A model M to predict Lr t using 〈Fr ti−8 , Fr ti−7 , . . . , Fr ti−1 〉,
which means predicting the label of current time interval
using observations from the last 8 time intervals to

Objective:
– Minimize the prediction error.



SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

4 ACCIDENT DATASET
This section describes the process of constructing a country-wide
tra!c accident dataset, which we named US-Accidents. An overview
of this process is shown in Figure 1. US-Accident contains 2.25 mil-
lion cases of tra!c accidents that took place within the United States
from February 2016 to March 2019. The following sub-sections pro-
vide a detailed description of each step of the data preparation
process. The dataset is publicly available at https://smoosavi.org/
datasets/us_accidents.

Final Accident Dataset

Data Augmentation

(4): With Reverse Geo-

coding (Nominatim)

(5): With Weather Data

(Wunderground)

(6): With Points-of-

Interest (OSM)

(7): With Period-of-Day

(TimeAndDate)

Traffic Data Collection

(1): MapQuest

Realtime Traffic

Data Collector

(2): MS-Bing

Realtime Traffic

Data Collector

(3): Integration Raw Accident

Dataset

Figure 1: Process of Creating Tra"c Accident Dataset

4.1 Tra"c Data Collection
4.1.1 Realtime Tra!ic Data Collection. We collected streaming traf-
"c data using two real-time data providers, namely “MapQuest Traf-
"c” [20] and “Microsoft Bing Map Tra!c” [2], whose APIs broadcast
tra!c events (accident, congestion, etc.) captured by a variety of
entities - the US and state departments of transportation, law en-
forcement agencies, tra!c cameras, and tra!c sensors within the
road-networks. We pulled data every 90 seconds from 6am to 11pm,
and every 150 seconds from 11pm to 6am. In total, we collected
2.27 million cases of tra!c accidents between February 2016 and
March 2019; 1.73 million cases were pulled from MapQuest, and
0.54 million cases from Bing.

4.1.2 Integration. Integration of the data consisted of removing
cases duplicated across the two sources and building a uni"ed
dataset. We considered two events as duplicates if their Haver-
sine distance and their recorded times of occurrence were both
below a heuristic threshold (set empirically at 250 meters and 10
minutes, respectively). We believe these settings to be conservative,
but we settled on them in order to ensure a very low possibility of
duplicates. Using these settings, we found about 24, 600 duplicated
accident records, or about 1% of all data. The "nal dataset after
removing the duplicated cases comprised 2.25 million accidents.

4.2 Data Augmentation
4.2.1 Augmenting with Reverse Geo-Coding. Raw tra!c accident
records contained only GPS data. We employed the Nominatim tool
[24] to perform reverse geocoding to translate GPS coordinates to
addresses, each consisting of a street number, street name, relative
side (left/right), city, county, state, country, and zip-code. This process
is same as point-wise map-matching.

4.2.2 Augmenting with Weather Data. Weather information pro-
vides important context for tra!c accidents. Thus, we employed
Weather Underground API [34] to obtain weather information for
each accident. Raw weather data was collected from 1,977 weather

stations located in airports all around the United States. The raw
data comes in the form of observation records, where each record
consists of several attributes such as temperature, humidity, wind-
speed, pressure, precipitation (in millimeters), and condition3. For
each weather station, we collected several data records per day,
each of which was reported upon any signi"cant change in any of
the measured weather attributes.

Each tra!c event e was augmented with weather data as fol-
lows. First the closest weather station s was identi"ed. Then, of
the weather observation records which were reported from s , we
looked for the weather observation recordw whose reported time
was closest to the start time of e , and augmented it with weather
data. In our integrated accident dataset, the average di#erence in re-
port time for an accident record and its paired weather observation
record was about 15 minutes.

4.2.3 Augmenting with Points-Of-Interest. Points-of-interest (POI)
are locations annotated on a map as amenities, tra!c signals, cross-
ings, etc. These annotations are associated with nodes on a road-
network. A node can be associated with a variety of POI types,
however, in this work we only use 13 types as described in Table 2.
We obtained these annotations from Open Street Map (OSM) [25]
for the United States, using its most recently released dataset (ex-
tracted on April 2019). The applicable POI annotations for a tra!c
accident a are those which are located within a distance threshold τ
from a. We determine this threshold by evaluating di#erent values
to "nd the value that is best able to associate a POI with an accident.
Essentially, the objective is to "nd the best distance for which a
POI annotation can be identi"ed as relevant to an accident record.
Therefore, we need a mechanism to measure the relevancy. To be-
gin with, we note that the natural language descriptions of tra!c
accidents follow a set of regular expression patterns, and that a few
of these patterns may be used to identify and use as an annotation
for the location type (e.g., intersection or junction) of the accident.

Regular Expression Patterns. Given the description of tra!c
accidents, we were able to identify 27 regular expression patterns;
16 of them were extracted based on MapQuest data, and 11 from
Bing data. Among the MapQuest patterns, the following expression
corresponds to junctions (see Table 2): “. . . on . . . at exit . . . ”,
and the following pattern mostly4 determines an intersection: “. . .
on . . . at . . . ”. An intersection is associated with crossing, stop, or
tra!c signal (see Table 2). Among Bing regular expression patterns,
two of them identify junctions: “at . . . exit . . . ” and “ramp to . . . ”.
Table 3 shows several examples of accidents, where the regular
expression pattern (in bold face) identi"es the correct POI type5.

The essential idea is to "nd a threshold value that maximizes the
correlation between annotations from POI and annotations derived
using regular expression patterns. Thus, for a set of accident records,
we annotate their location based on both methods, regular expres-
sion patterns as well as OSM-based POI annotations (using a speci"c
distance threshold). Then, we measure the correlation between the
annotations derived from these methods to "nd which threshold
value provides the highest correlation (i.e., the best choice). Note
that we employ the regular expression patterns as pseudo ground
truth labels, to evaluate OSM-based POI annotations using di#erent

3Possible values are clear, snow, rain, fog, hail, and thunderstorm.
4Using 200 randomly sampled accidents cases which were manually checked on a map,
about 78% of matches using this pattern were actually occurred on intersections.
5These cases were manually checked on a map to ensure the correctness of the anno-
tation.
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Table 3: Examples of tra"c accidents with their annotation type as-

signed using their natural language description by regular expres-

sion patterns.

Source Description Type

MapQuest Serious accident on 4th Ave at McCullaugh Rd. Intersection
MapQuest Accident on NE-370 Gruenther Rd at 216th St. Intersection
MapQuest Accident on I-80 at Exit 4A Treasure Is. Junction
MapQuest Accident on I-87 I-287 Southbound at Exit 9 I-287. Junction

Bing At Porter Ave/Exit 9 - Accident. Left lane blocked. Junction
Bing At IL-43/Harlem Ave/Exit 21B - Accident. Junction
Bing Ramp to I-15/Ontario Fwy/Cherry Ave - Accident. Junction
Bing Ramp to Q St - Accident. Right lane blocked. Junction

Algorithm 1: Find Annotation Correlation

1: Input: a dataset of tra!c accidents A, a database of points-of-interest
P, and a distance threshold τ .

2: Extract and create a set of regular expression patterns RE to identify a
speci"c POI ν .

3: Create set S1: for each tra!c accident a ∈ A, we add it to S1 if its
natural language description a .desc can be matched with at least one
regular expression in set RE .

4: Create set S2: for each tra!c accident a ∈ A, we add it to S2 if there is
at least one POI p ∈ P of type ν , where haversine_distance (a, p) ≤ τ .

5: Output: Return Jaccard (S1, S2).

threshold values. We propose Algorithm 1 to "nd the best distance
threshold. We use a sample of 100, 000 accidents as set A (step
1). For step 2, we consider either “intersection” or “junction”, and
use the set of relevant regular expressions (see Table 3) in terms
of RE. Next we create set S1 by annotating each tra!c accident
a ∈ A using the regular expression patterns in RE (step 3). Then we
annotate each tra!c accident a ∈ A based on points-of-interests in
P, using the distance threshold τ to create S2 (step 4). Finally, we
calculate the Jaccard similarity score using Equation 1 (step 5):

Jaccard (S1, S2) =

�

� S1 ∩ S2
�

�

�

� S1 ∪ S2
�

�

(1)

We examined the following candidate set to "nd the optimal thresh-
old value (all values inmeters): {5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125,
150, 200, 250, 300, 400, 500}. We separately studied samples from
Bing and MapQuest, and employed corresponding regular expres-
sion patterns for “intersection” and “jucntion”. Figure 2 shows the
results for each data source and each annotation type. From Fig-
ure 2a, we see that the maximum correlation for intersections is
obtained for a threshold value of 30 meters. Figures 2b and 2c show
that 100 meters is an appropriate distance threshold for annotating
a junction.

Thresholds for the other available annotations in Table 2 are de-
rived from the thresholds for junction and intersection as described
below:

• Junction-based threshold. Given the de"nition of a junction
(i.e., a highway ramp, exit, or entrance), we used the same thresh-
old (100 meters) for the following types: amenity and no-exit.

• Intersection-based threshold. Given the de"nition of an inter-
section, we used the same threshold (30 meters) for the following
annotation types: bump, crossing, give-way, railway, roundabout,
station, stop, tra!c calming, tra!c signal, and turning loop.

Using these thresholds, we augmented each accident record with
points-of-interest. In summary, 27.5% of accident records were aug-
mented with at least one of the available POI types in Table 2. Fur-
ther discussion on annotation results are presented in Section 4.3.

4.2.4 Augmenting with Period-of-Day. Given the start time of an
accident record, we used “TimeAndDate” API [32] to label it as
day or night. We assign this label based on four di#erent daylight
systems, namely Sunrise/Sunset, Civil Twilight, Nautical Twilight,
and Astronomical Twilight. Note that these systems are de"ned
based on the position of the sun with respect to the horizon, and
each provide a di#erent de"nition for period-of-day6.

4.3 US-Accidents Dataset
Using the process described above, we created a countrywide dataset
of tra!c accidents, which we name US-Accidents. US-Accident con-
tains about 2.25 million cases of tra!c accidents that took place
within the contiguous United States from February 2016 to March
2019. Table 4 shows the important details of US-Accidents. Also,
Figure 3 provides more details on characteristics of the dataset. Fig-
ure 3-(a) shows that signi"cantly more accidents were observed
during the weekdays than weekends. Based on parts (b) and (c)
of Figure 3, it can be observed that the hourly distribution during
weekdays has two peaks (8am and 5pm), while the weekend distri-
bution shows a single peak (1pm). Figure 3-(d) demonstrates that
most of the accidents took place near junctions or intersections
(crossing, tra!c signal, and stop). MapQuest tends to report more
accidents near intersections, while Bing reported more cases near
junctions. This shows the complementary behavior of these APIs,
and hence the comprehensiveness of our dataset. Figure 3-(e) de-
scribes distribution of road types, extracted from the map-matching
results (i.e., street names). We used street names to identify type
of the road. Here we note that about 32% of accidents happened
on or near local roads (e.g., streets, avenues, and boulevards), and
about 40% took place on or near high-speed roads (e.g., highways,
interstates, and state roads). We also note that Bing reported more
cases on high-speed roads. Finally, the period-of-day data shows
that about 73% of accidents happened after sunrise (or during the
day).

Table 4: US-Accidents: details as of March 2019.

Total Attributes 45

Tra!c Attributes (10)
id, source, TMC [33], severity, start_time, end_time,
start_point, end_point, distance, and description

Address Attributes (8)
number, street, side (left/right), city,
county, state, zip-code, country

Weather Attributes (10)
time, temperature, wind_chill, humidity,

pressure, visibility, wind_direction, wind_speed,
precipitation, and condition (e.g., rain, snow, etc.)

POI Attributes (13) All cases in Table 2

Period-of-Day (4)
Sunrise/Sunset, Civil Twilight,

Nautical Twilight, and Astronomical Twilight

Total Accidents 2,243,939
# MapQuest Accidents 1,702,565 (75.9%)

# Bing Accidents 516,762 (23%)
# Reported by Both 24,612 (1.1%)

Top States
California (485K), Texas (238K), Florida (177K),

North Carolina (109K), New York (106K)

6See https://en.wikipedia.org/wiki/Twilight for more details.
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(a) Using MapQuest for Intersection (b) Using MapQuest for Junction (c) Using Bing for Junction

Figure 2: Correlation study between regular-expression and OSM-based extracted annotations to !nd the best distance threshold values.

(a) Day of Week (b) Hour of Day (weekdays) (c) Hour of Day (weekends)

(d) points-of-interest Distribution (e) Road-type Distribution (f) Temperature Distribution

Figure 3: Characteristics of US-Accidents dataset, in terms of time analysis (a)–(c), points-of-interest-based augmentation dis-

tribution analysis (d), map-matching-based road type coverage analysis (e), and temperature analysis (f).

5 ACCIDENT PREDICTION MODEL
In this section we describe our tra!c accident prediction framework.
We start with description of feature vector representation, and then
present our proposal for real-time tra!c accident prediction.

5.1 Feature Vector Representation
Regarding the problem description in Section 3, we create a feature
vector representation for each geographical region r of size 5km ×

5km during a time interval t = 15minutes . Such representation
includes the following feature categories:

• Tra"c: a vector of size 7 representing frequency of available
tra!c events (i.e., accident, broken-vehicle, congestion, construc-
tion, event, lane-blocked, and %ow-incident) during the current
15 minutes interval. We obtain tra!c events from [22].

• Time: includes weekday (a binary value to show weekday or
weekend), hour-of-day (a one-hot vector of size 5 to show belong-
ing to a speci"c time interval as de"ned in [21])7, and daylight
(an attribute to show period-of-day: day or night). We obtain
daylight data from [32].

7These time intervals are [6am – 10am], [10am – 3pm], [3pm – 7pm], [7pm – 10pm],
and [10pm – 6am].

• Weather: a vector representing 10 weather attributes including
temperature, pressure, humidity, visibility, wind-speed, precip-
itation amount; and four indicator %ags for special events rain,
snow, fog, and hail. We obtain weather data from [34].

• POI: a vector of size 13 to represent frequency of POIs within r ,
for amenity, speed bump, crossing, give-way sign, junction, no-
exit sign, railway, roundabout, station, stop sign, tra!c calming,
tra!c signal, and turning loop. We obtain POI data from [25].

• Desc2Vec: given a historical set of tra!c events in region r ,
we use their natural language description, and by employing
the GloVe pre-trained distributed word vectors [27], we create a
description to vector (Desc2Vec) representation for r . Such repre-
sentation is the average representation of words in description
of all events which took place within r during a particular time
period. Size of this vector is 100. The choice of GloVe among
the existing models is because of its well-known applicability
for generic applications and also reasonable dictionary size (i.e.,
400K terms). We obtain tra!c events from [22].

In this way, we represent r during time interval t by 24 time-variant
(i.e., tra!c, time, and weather) and 113 time-invariant (i.e., POI and
Desc2Vec) attributes. In order to predict the label of r during t , we
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use a vector representing the last 8 time intervals (last two hours),
including one instance of time-invariant attributes (113 features)
and 8 instances of time-variant attributes (8 × 24 features)8.

5.2 Deep Accident Prediction (DAP) Model
To better utilize heterogeneous sources of data and perform real-
time tra!c accident prediction, we propose a deep neural network
model, named the Deep Accident Prediction (DAP). This model is
shown in Figure 4, and we describe its components as follows.
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Figure 4: DAP: A Deep neural-network-based Accident Pre-

diction model. Here, R is the set of all regions; each Ci
is a grid-cell (or region); and FC, TTW, and POI stand for

fully connected, time-tra"c-weather, and point-of-interest,

respectively.

• Recurrent Component: Regarding the de"nition of our predic-
tion framework, we use a set of 8 vectors, each of size 24 (i.e.,
time-variant attributes), which can be treated as a sequence of
such vectors (given their temporal order); therefore, we may ben-
e"t from the recurrent neural network models. Speci"cally, we
use a long-short-term-memory (LSTM) model [12] as represented
in Figure 4, which includes two recurrent layers, each with 128
LSTM cells. Thus, the output is a vector of size 128.

• Embedding Component: Given the index of a grid-cell, this
component provides a distributed representation of that cell
which encodes essential information in terms of spatial hetero-
geneity, tra!c characteristics, and impact of other environmental
stimuli on accident occurrence. This distributed representation
will be derived as we train the entire pipeline. We feed this repre-
sentation to a feed-forward layer of size 128 that uses the siдmoid
activation function. Note that the embedding matrix is of size
|R | ×128, where R is the set of all grid-cell regions in input dataset.

• Description-to-Vector Component: This component utilizes
the natural language description of historical tra!c events in a
grid-cell, that is, Desc2Vec data. We feed Desc2Vec of a grid-cell
to a feed-forward layer of size 128 using the siдmoid activation
function.

8See Section 3 for formulation of prediction task.

• Points-of-Interest Component: This component utilizes points-
of-interest data (a vector of size 13), which is a representation of
spatial characteristics. We feed a POI vector to a feed-forward
layer of size 128 which also uses the siдmoid activation function.

• Fully-connected Component: This component utilizes the out-
put of above components to make the "nal prediction. Here we
have four dense layers of size 512, 256, 64, and 2, respectively.
Additionally, to speed-up the training process, we use batch nor-
malization [14] after the second and the third layer. We use ReLU
as the activation function of the "rst three layers, and apply
softmax on the output of the last layer.

The DAP model utilizes inputs of various types to better capture
temporal and spatial heterogeneity. UsingDAPwe are able to extract
latent spatio-temporal features in terms of embedding representa-
tions, whose impact we show through our real-world experiments.
We employed grid-search to perform hyper-parameter tuning to "nd
the optimal number of recurrent layers (choices of {1, 2, 3}); the best
type of recurrent cells (choices of {Vanilla-RNN , GRU , LSTM});
size of the embedding vector for grid-cells (choices of {50, 100, 150});
sizes of the di#erent fully connected layers (choices of {64, 128, 256,
512}); and activation function for each fully connected layer (choices
of {siдmoid, ReLU , tanh}). We employed the Adam optimizer [16]
with an initial learning rate of 0.01 to train the model.

6 EXPERIMENTS AND RESULTS
In this section we "rst describe the data which is used for prediction
and analysis. Then, we describe baseline models. Next we compare
di#erent models using a variety of metrics, followed by analyses
of data attributes. All implementations are in Python using Tensor-
%ow [11], Keras [9], and scikit-learn [26] libraries; and experiments
were run on nodes at the Ohio Supercomputer Center [4] 9.

6.1 Data Description
To evaluate our accident prediction framework, we chose six cities:
Atlanta, Austin, Charlotte, Dallas, Houston, and Los Angeles; primar-
ily so as to achieve diversity in tra!c and weather conditions, popu-
lation, population density, and urban characteristics (road-network,
prevalence of urban versus highway roads, etc.). We sampled a
subset of data (tra!c, weather, etc.) collected from June 2018 to
August 2018 (i.e., 12 weeks) for each city. We chose this time pe-
riod to prevent any noises as result of seasonality in weather and
tra!c patterns. To create Desc2Vec for each grid cell region, we
used tra!c events which took place within that region from June
2017 to May 2018 (i.e., a one-year time frame), where data obtained
from the Large-Scale Tra!c and Weather Events dataset [22]. From
the tra!c, time, weather, POI, and Desc2Vec data for each grid cell,
and by scanning through the data with a window of size 2 hours
and 15 minutes and a shift of 15 minutes (see Figure 5), we built a
sample entry using data of the "rst two hours (see Section 5.1). Each
entry is represented by 113 time-invariant and 8 × 24 time-variant
features. The last 15 minutes is used to label the sample entry as an
accident or non-accident case.
Since accidents are rare and because our dataset is sparse 10, we
performed negative sampling to balance the frequency of samples
between accident and non-accident classes. Speci"cally, we uni-
formly sampled from the non-accident class with a probability of
2.0%. Table 5 summarizes the number of samples for each class (Acc

9Code and sample data is available at https://github.com/mhsamavatian/DAP.
10Our data is result of streaming data with possibility of missing records.
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Figure 5: Creating a Sample Entry (see Section 6.1).

versus Non-Acc), for each city, after negative sampling. As can be
seen, the maximum ratio of accident to non-accident is about 27%
for Los Angeles (which is still lower than the ratio which is employed
by previous studies; e.g., Yuan et al. [37] employed 33%). Table 5
also shows the number of all other tra!c events (except accidents)
which took place during the selected 12 weeks time frame. We use
data from the "rst 10 weeks to train and data from the last two
weeks as the test set, for each city.

Table 5: Distribution of accident (Acc) and non-accident (Non-Acc)

classes, and tra"c events (except accidents).

City #Acc #Non-Acc Acc/Non-Acc #Tra!c Events

Atlanta (GA) 2,630 11,970 22% 24,396
Austin (TX) 4,274 23,280 18% 16,313
Charlotte (NC) 5,295 20,192 26% 14,030
Dallas (TX) 3,363 28,537 12% 28,098
Houston (TX) 5,859 43,762 13% 40,735
Los Angeles (CA) 7,974 29,020 27% 97,090

6.2 Baseline Models
We chose logistic regression (LR), gradient boosting classi"er (GBC),
and a Deep Neural Network (DNN) model as baselines.

- Logistic Regression (LR): A signi"cant number of previous
studies leveraged regression-based models to perform accident
prediction [5, 7, 8]. Therefore, we employ logistic regression as a
reasonable baseline to perform our binary classi"cation task.

- Gradient Boosting Classi!er (GBC): GBC is a popular general-
purpose classi"cation model, with useful boosting characteristics
and a suitable learning process. In practice, GBC usually provides
superior results for binary ormulti-class classi"cation tasks, when
compared to the other models such as Random Forest or Support
Vector Machine; our preliminary experiments also con"rmed this.

- DeepNeural Network (DNN): This is a four-layer feed-forward
neural network, with three hidden layers of size 512, 256, and
64, respectively. ReLU was used as the activation function of
the hidden layers, and softmax was applied on the output of
the last layer. To speed-up the training process, we used batch
normalization [14] after the second and third hidden layers. We
employed the Adam optimizer [16] with an initial learning rate
of 0.01 to train this model.

As input, the baseline models utilize vectors of size 305, that in-
cludes 113 time-invariant and 192 time-variant attributes (see Sec-
tion 5.1). The output is the prediction probability for “accident” and
“non-accident” classes. Using grid-search over heuristic choices of
parameters, we found the best parameter setting for each model.
For LR, we performed the grid search over choices of regular-
izations: {L1, L2}, maximum iterations: {100, 100, 10000, 100000},
and solvers: {newton-cд, lb f дs, saд, liblinear }. For GBC, the grid

search was performed over choices of learning rates: {0.01, 0.05, 0.1,
0.15}, number of estimators: {100, 200, 300, 400}, and maximum
depth: {3, 4, 5, 6}. For DNN, the grid search was performed over
choices of initial learning rates: {0.001, 0.01, 0.05, 0.1}, activation
functions: {siдmoid,ReLU }, number of hidden layers: {2, 3, 4}, and
size of hidden layers: {128, 256, 512}.

6.3 Exploring Models
In this section we evaluate di#erent models based on their ability
to predict tra!c accidents. That is, we compare di#erent models
based on F1-score (de"ned by Equation 2), reported for each class
separately, as well as the weighted average F1-score (the relative
frequency of each class is used as its weight).

Precision =
true positive

true positive + false positive

Recall =
true positive

true positive + false negative

F 1-Score =
2 × Precision × Recall

Precision + Recall

(2)

We used logistic regression (LR), gradient boosting classi"er
(GBC), and a deep neural network (DNN) model as baselines. We
report the result of our DAP model, as well as a variation of DAP
without the embedding component (DAP-NoEmbed). We ran each
model three times, and reported the average results. As mentioned
before, we used grid search to "nd the optimal parameters. For
LR and GBC, we performed this for each city, but for the neural-
network-based models we employed grid search for one city and
used the best architecture setting for the other cities. DNN, DAP,
and DAP-NoEmbed were trained for 60 epochs, and using early
stopping based on the validation set (i.e., 10% of the training set),
we used the best model for prediction on the test set. It is worth
noting that each model is separately trained and tested for each city
and we do not train a single model for all cities. Table 6 presents
the results of this experiment. In this table we report F1-score for
class of accident (Acc), non-accident (Non-Acc), and the weighted
average (W-Avg). We note that the class of accident is usually more
important, while we seek to provide reasonable results for the other
class (non-accident) as well. LR and GBC usually provide better
results for non-accident class, and given the frequency of this class,
their weighted average score is also reasonably high. However,
when considering the accident class, we note that neural-network-
based models provide more satisfactory results, where our proposed
DAP model provides superior results for 5 of the 6 cities (DNN
provided the best result for Houston). Considering the weighted
average on F1-score , we note that DAP provides better results when
compared to the other neural-network-based models.

To better compare di#erent models, Figure 6 shows the aver-
age results of di#erent models across all six cities, by separately
reporting F1-score for class of accident and non-accident, and the
weighted average F1-score . As one can see, our proposed model
provides a signi"cant improvement for class of accidents, while
LR and GBC provide slightly better results for the non-accident
class. When considering the weighted average, we observe LR, DAP
and GBC slightly outperform the other models. Once again note
that the “accident class” is the one of most importance, given that
accidents are rare events. Hence we should pay more attention to
false negatives (i.e., predicting an accident as a non-accident) rather
than false positives (i.e., predicting a non-accident as an accident).
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Table 6: Accident prediction results based on F1-score for class of accidents (Acc), non-accidents (Non-Acc), and weighted average (W-avg).

P
P
P
P
P
P

City

Model LR GBC DNN DAP-NoEmbed DAP
Acc Non-Acc W-Avg Acc Non-Acc W-Avg Acc Non-Acc W-Avg Acc Non-Acc W-Avg Acc Non-Acc W-Avg

Atlanta 0.54 0.91 0.83 0.57 0.91 0.84 0.62 0.89 0.83 0.62 0.91 0.84 0.65 0.89 0.84
Austin 0.58 0.93 0.87 0.61 0.93 0.87 0.62 0.92 0.87 0.62 0.93 0.87 0.64 0.91 0.87
Charlotte 0.56 0.91 0.83 0.60 0.91 0.84 0.61 0.87 0.82 0.61 0.87 0.81 0.63 0.87 0.82
Dallas 0.30 0.94 0.87 0.32 0.94 0.87 0.36 0.94 0.87 0.43 0.88 0.83 0.50 0.93 0.88
Houston 0.49 0.94 0.88 0.51 0.94 0.88 0.59 0.93 0.88 0.58 0.92 0.88 0.58 0.93 0.88
Los Angeles 0.41 0.88 0.78 0.45 0.88 0.79 0.53 0.81 0.75 0.53 0.77 0.72 0.56 0.84 0.78

Figure 6: Comparing di#erent models based on average F 1-score

(across all six cities) for class of accident, non-accident, and

weighted average.

While we cannot directly compare our proposal with the state-
of-the-art models such as [8, 18, 37] (due to inconsistency between
input types, unavailability of input data used by those models, incon-
sistency between reported metrics, etc.), we note that their reported
results based on F1-score show similar trend and values (see [37]
for example). Further, we believe that separately reporting predic-
tion results for di#erent classes (i.e., accident versus non-accident)
provides a better context to compare di#erent solutions.

6.4 Exploring Features
Our next experiment was to examine the importance of di#erent
feature categories for the task of accident prediction. For this explo-
ration, we designed two testing scenarios as follows:

• Only One: This scenario means we only use one category of
features (tra!c, POI, time, etc.) to perform accident prediction.

• All But One: This scenario means to remove only one category
of features and perform the prediction task.

For this experiment, we only report the result of GBC and DAP-
NoEmbed, and omit the results of other models for the interest of
space. Also, because of having the trainable embedding component,
we choose DAP-NoEmbed over DAP to exclude the e#ect of the em-
bedding component when studying the impact of other features11.
Figure 7 demonstrates the results, where we report weighted aver-
age F1-score , and F1-score on accident class. Based on parts (a), (b),
(e), and (f), we generally observe weather (WE) and time (TM) are
the least important categories of attributes to be used alone12. How-
ever, parts (c), (d), (g), and (h) reveal that removing time attributes
would signi"cantly hurt the prediction performance. Based on these
"gures, when we remove Desc2Vec, POI, and Tra!c attributes (i.e.,

11Since DAP utilizes an embedding component, we cannot fairly study the impact
of several categories of features (in isolation), such as tra!c, weather, and points-of-
interest; given the correlation between these categories and the latent representation
which will be derived for each region.
12Note that we could not use categories D2V and POI for DAP-NoEmbed, regarding
the architecture of this model.

D+P+TR), the prediction performance drops signi"cantly, which
shows the importance of these categories. We may also note that
these categories might have correlation, where removing one of
them does not signi"cantly change the prediction results (see (c)
and (d)). Therefore, when we remove all three, then we observe a
signi"cant drop.

It is worth noting that among the POI types, we found “crossing”,
“junction”, “stop”, and “tra!c signal” to be more e#ective than the
others for the task of accident prediction.

7 CONCLUSION AND FUTUREWORK
Tra!c accidents are a major public safety issue, with much research
devoted to analysis and prediction of these rare events. However,
most of the studies su#er from using small-scale datasets, relying on
extensive data that is not easily accessible to other researchers, and
being not applicable for real-time purposes. To address these chal-
lenges, we introduced a new framework for real-time tra!c accident
prediction based on easy-to-obtain, but sparse data. Our prediction
model incorporated several neural network based components that
used a variety of data attributes such as tra!c events, weather data,
points-of-interest, and time information. We also created a publicly
available countrywide tra!c accident dataset, named US-Accidents,
through a comprehensive process of data collection, cleansing, and
augmentation. Using the data from US-Accidents, we compared our
work against several neural-network-based and traditional machine
leaning models, and showed its superiority by means of extensive
experiments. Further, we studied the impact of di#erent categories
of data attributes for tra!c accident prediction, and found time,
tra!c events, and points-of-interest as having signi"cant value. In
the future, we plan to incorporate other publicly available sources
of data (e.g., demographic information and annual tra!c reports)
for the task of real-time tra!c accident prediction.
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