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Abstract—Spin-transfer torque random access memory (STT-
RAM) is an emerging memory technology with several attractive
properties including non-volatility, high density, low leakage,
and high endurance. These characteristics make it a potential
candidate for replacing SRAM structures on processor chips. This
paper presents NVSleep, a low-power microprocessor framework
that leverages STT-RAM to implement fast checkpointing that
enables near-instantaneous shutdown of cores without loss of
the execution state. NVSleep stores almost all processor state
in STT-RAM structures that do not lose content when power-
gated. Memory structures that require low-latency access are
implemented in SRAM and backed-up by ”shadow” STT-RAM
structures that are used to implement fast checkpointing. This
enables rapid shutdown of cores and low-overhead resumption of
execution, which allows cores to be turned off frequently and for
short periods of time to take advantage of idle execution phases
and save power. We present two implementations of NVSleep:
NVSleepMiss which turns cores off when last level cache misses
cause pipeline stalls and NVSleepBarrier which turns cores off
when blocked on barriers. Evaluation of a simulated 64-core
system shows average energy savings of 21% for NVSleepMiss
for SPEC2000 benchmarks and 34% for NVSleepBarrier in
high barrier count multi-threaded workloads from PARSEC and
SPLASH2 benchmarks.

I. INTRODUCTION

Power consumption is a first-class constraint in micropro-
cessor design. The increasing core count in chip multiproces-
sors is rapidly driving chips towards a new “power wall” that
will limit the number of compute units that can be simul-
taneously active. Traditional power management techniques
such as dynamic voltage and frequency scaling (DVFS) are
becoming less effective as technology scales. Supply voltage
scaling has slowed significantly limiting the range and ef-
fectiveness of DVFS. Techniques like clock gating are not
affected by voltage scaling but they cannot control leakage
power which is expected to increase in future technologies [5].
Power gating, a technique that cuts power supply to functional
units can be an effective mechanism for saving both leakage
and dynamic power. Unfortunately power gating leads to the
loss of data stored in the gated units. Stateless units such as
ALUs can be restarted with little overhead. However, units
with significant storage such as register files, caches, and
other buffers and queues hold large amounts of data and state
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information. Restoring that information following a shutdown
incurs a significant performance overhead.

Non-volatile memories such as Phase Change Memory
(PCM), Spin-Transfer Torque RAM (STT-RAM), NAND
Flash, etc. are emerging as a promising alternative to DRAM
and SRAM. These new memory technologies have many
promising characteristics, such as very low leakage, high-
density, and scalability that is expected to exceed that of
SRAM and DRAM. STT-RAM, a new generation of Mag-
netoresistive RAM is a particularly attractive class of non-
volatile memory because it has infinite write endurance, good
compatibility with CMOS technology, fast read speed, and low
read energy [1], [3], [12], [13]. A significant drawback of STT-
RAM is higher write latency and energy compared to SRAM.

This paper proposes NVSleep, a low-power microproces-
sor framework that leverages STT-RAM to implement rapid
shutdown of cores without loss of execution state. This allows
cores to be turned off frequently and for short periods of time
to take advantage of idle execution phases to save power. We
present two implementations of NVSleep: NVSleepMiss which
will turn cores off when last level cache (LLC) misses cause
pipeline stalls and NVSleepBarrier which will turn cores off
when blocked on barriers.

In both NVSleep implementations all memory-based func-
tional units that are not write-latency sensitive (such as caches,
TLBs, and branch predictor tables) are implemented using
STT-RAM. These structures do not lose content when power-
gated. Other on-chip structures that require low-latency writes
are implemented using SRAM and backed-up by shadow
STT-RAM structures. A fast checkpointing mechanism stores
modified SRAM content into STT-RAM. After the content is
saved, the entire structure can be power-gated. When power is
restored, the content of the SRAM master is retrieved from the
non-volatile shadow. This allows rapid shutdown of cores and
low-overhead resumption of execution when cores are powered
back up.

Evaluation using SPEC CPU2000, PARSEC, and
SPLASH2 benchmarks running on a simulated 64-core system
shows average energy savings of 21% for NVSleepMiss in
SPEC2000 benchmarks and 34% for NVSleepBarrier in high
barrier count multi-threaded workloads from PARSEC and
SPLASH2 benchmarks. The energy savings are achieved with
a very small performance overhead.
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Overall, this paper makes the following contributions:

• To the best of our knowledge, NVSleep is the first
work to take advantage of the non-volatility feature
of STT-RAM to implement rapid pipeline-level check-
pointing.

• NVSleep proposes a general and low overhead frame-
work for reducing energy consumption by exploiting
short idle execution phases.

• NVSleep is also the first checkpointing framework
that is sufficiently fast to allow cores to be shutdown
during LLC misses.

The rest of this paper is organized as follows: Sections
II and III describe the design and implementations of the
NVSleep framework. An experimental evaluation is presented
in Sections IV and V. Finally, Section VI discusses related
work, and Section VII concludes.

II. NVSLEEP FRAMEWORK DESIGN

NVSleep improves microprocessor energy efficiency by
rapidly turning off cores during idle periods and quickly
restoring them to full activity when work becomes available.
NVSleep is designed to both checkpoint state very quickly and
to restore execution almost instantly after the core is turned
on, without requiring the flushing and refilling of the pipeline.
This allows NVSleep to take advantage of short idle execution
phases such as those caused by misses in the last level cache.

The NVSleep framework uses two designs for on-chip
memory structures. Storage units that are less sensitive to write
latency – such as caches and branch predictor tables – are
implemented with non-volatile STT-RAM equivalents. When
a core is powered off, these units will not lose state. In order
to improve the write performance of STT-RAM structures,
especially in the presence of bursty activity, we add small
SRAM write buffers. A similar optimization was introduced
by prior work [3], [11].

Memory structures that are more sensitive to write latency
and are frequently updated in the critical path of the execution
(such as Register File, Reorder Buffer, etc) are implemented
using a hybrid SRAM/STT-RAM design. Figure 1 illustrates
this design. The primary storage elements are implemented
using SRAM. The SRAM “Master” banks are backed-up using
STT-RAM “Shadow” arrays of equal size. When a checkpoint
is initiated, the SRAM entries that have been updated since
the last checkpoint are transferred to the STT-RAM Shadow.
To speed up the checkpointing process, all hybrid memory
structures are banked, allowing all banks to be checkpointed
in parallel. Since banking introduces additional area/power
overheads, we experiment with various banking options to
determine the optimal configuration. To reduce overhead, the
shadow and master banks share row decoders. This is possible
because during checkpointing and restore the same rows are
being accessed in both the master and the shadow. The
checkpoint is coordinated by control logic associated with
each hybrid structure. The control logic generates addresses for
the checkpoint and restore sequence and checks and updates
“modified” bits used to identify blocks that have been updated
since the last checkpoint.
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Fig. 1: SRAM memory structure with STT-RAM backup.

NVSleep Core Units Technology
All caches STT-RAM
I-TLB and D-TLB STT-RAM
Branch prediction table STT-RAM
Register file SRAM + STT-RAM shadow
Instruction window SRAM + STT-RAM shadow
Reorder buffer SRAM + STT-RAM shadow
Load/store queue SRAM + STT-RAM shadow
Pipeline registers SRAM + STT-RAM shadow
All logic CMOS

TABLE I: Technology choices for NVSleep structures.

All pipeline registers outside in the processor are imple-
mented using CMOS flip-flops and backed-up with STT-RAM
shadows. Their content is checkpointed in parallel in a single
write cycle making banking unnecessary. For completeness,
table I enumerates the technologies used in the principal
components of the NVSleep framework.

A. Checkpointing Control

NVSleep controls checkpointing, power-down, and wakeup
of cores in a distributed fashion across the chip. It relies on the
L1 cache controller of each core to help coordinate both the
sleep and wakeup process. NVSleep uses two mechanisms for
triggering the sleep sequence: one that is entirely hardware-
initiated and managed and one that uses a software API. The
hardware-driven mechanism is appropriate for exploiting idle
phases caused by events that can be easily identified by the
hardware – such as misses in the last level cache.

The software API can be used by the system to request
the shutting down of cores. The API relies on a dedicated
sleep() instruction associated with a reserved memory
address 0xADDR that is tracked by the cache controller. The
instruction can be used by the compiler or programmer when
an idle execution phase is expected. For instance, a core can be
shut down while it is blocked on a barrier, during long latency
I/O transfers, or while it is waiting for a lock to be released.
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B. Wakeup Mechanism

Wakeup mechanisms based in the L1 cache controllers
of each core coordinate the wakeup processes. The cache
controllers are not power gated and are therefore available to
initiate and coordinate wakeup events. These events include
returning misses or wakeup messages from other cores.

For the hardware-initiated sleep, if the sleep event has
been triggered by an LLC miss, the cache controller wakes
up the core once the missing data makes its way to the L1.
The wakeup of a core that was explicitly shut down with the
sleep() instruction has to be initiated by another core or
service processor. The wakeup of a core is triggered by writing
to the sleep 0xADDR address associated with that core. An
update or invalidate message for that address will direct the
cache controller of the sleeping core to start waking up.

The wakeup overhead depends on how quickly the core can
be brought back online and have its state restored. Bringing
a system online after sleep can cause ringing in the power
supply, which can lead to voltage droops. To prevent large
droops we gradually ramp-up core wakeup. In the first phase of
wakeup no computation is performed to allow the supply lines
to settle. In the second phase, checkpointed data is restored
from shadow STT-RAM structures. Finally, normal execution
is resumed. More importantly, we do not allow multiple cores
to wakeup simultaneously, limiting the current ramp-up to 1/N
of the chip maximum, where N is the number of cores.

III. NVSLEEP FRAMEWORK IMPLEMENTATION

We developed two applications of the NVSleep framework.
The first, which we call NVSleepMiss is hardware-controlled
and shuts down cores that block on misses in the last level
cache. The second, which we call NVSleepBarrier, is software-
controlled and turns off cores that are blocked waiting on
barrier synchronization.

A. NVSleepMiss

Last-level cache (LLC) misses can lead to hundreds of
cycles of stalled execution due to long latency memory ac-
cesses. Even though out-of-order processors can hide some
of that latency, pipelines eventually stall when independent
instructions are no longer available. Even though stalled cores
don’t consume as much power as active cores, their idle power
is still significant. For instance, modern Intel processors idle at
anywhere between 10W and 50W [4]. NVSleepMiss addresses
this inefficiency.

NVSleepMiss requires identification and tracking of misses
in the last level cache. For this purpose we augment the miss
handling status register (MSHR) of the L1 cache controller. We
add two new fields to the standard MSHR design, as shown in
Table II. The first field, labeled ”LLC Miss”, is a one-bit tag
used to indicate whether this L1 cache miss ends up missing
in the last level (LL) cache as well. This tag is used to decide
when a core should be asked to sleep. The second field is
”Pending LD” which is used to keep track of other L1 loads
that might still be pending when the core shuts down.

Figure 2 illustrates the steps involved in the NVSleepMiss
shutdown and wakeup. In this example a load request misses
in the L1 cache in step 1 . The controller of the last level

Address Type/Misc. LLC Miss Pending LD
0xAA76...80 ... 0 0
0xC342...F7 ... 1 0
0xFE34...25 ... 0 1

TABLE II: NVSleep MSHR with additional fields.

Core N
L1

CTRL

L2 
CacheCore 0

L1

CTRL

1 LD(0x00FF) 2 LLCMiss(0x00FF)

3 SHTDWN 4 Data(0x00FF)

5 WAKEUP
......

0x00FF
MSHR

1

Fig. 2: NVSleepMiss hardware-initiated sleep and wakeup.

cache informs the L1 cache controller of an LLC miss event
in step 2 . The L1 cache controller will find the related entry
in the MSHR table and update its ”LL Miss” field to 1. If there
are no other pending LLC misses, a shutdown signal will be
sent to the core (step 3 ).

A core initiate the shutdown sequence upon receipt of a
sleep signal from the cache controller. To ensure the core
wakes up in a consistent state, all instructions that follow
the LLC miss in program order are allowed to complete
and are retired from the reorder buffer. Any instructions that
are still “in-execution” (meaning they occupy the execution
cluster) are allowed to complete and no new instructions are
dispatched. The checkpointing sequence begins as soon as
the core receives the sleep signal and takes place in parallel
with the draining of the execution pipeline. Only SRAM/STT-
RAM hybrid structures require explicit checkpointing. The
checkpointing control unit copies all modified entries in the
SRAM section to STT-RAM. Once the pipeline is drained, a
second checkpointing phase is initiated to save any modified
entries still remaining (such as those modified while draining
the execution cluster).

While draining the execution pipeline after receiving the
sleep signal the core could still send load requests to the cache.
The core does not need to wait for these loads to be serviced in
case they miss in the L1. The cache controller will keep track
of what requests have completed while the core was sleeping
using the “Pending LD” field of the MSHR. All load requests
in the MSHR that are marked as “Pending LD”s will be re-
issued to the cache by the cache controller after the core wakes
up. This ensures the latest copy of the data is supplied to
the core after wakeup. Only loads need to be tracked because
stores can complete while the processor is sleeping and do not
require any data to be sent to the core.

If data arrives at the L1 from a lower-level cache while
the core is sleeping, that data will be written into the cache. If
the data corresponds to a load request, the associated MSHR
“Pending LD” field will be set to 1. If this is the last pending
LLC miss, a wakeup signal will be sent to wake up the sleeping
core. This is illustrated by steps 4 and 5 in Figure 2.
Otherwise, the “LL Miss” tag will be set to 0 but no wakeup
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Core N
L1

CTRL

L2 
CacheCore 0

L1

CTRL

1  sleep(0xADDR)

......

0xADDR r2

3   ST(0xADDR)

4   INV(0xADDR)
5 WAKEUP

Fig. 3: NVSleepBarrier software-initiated sleep and wakeup.

signal will be generated. This is because other LLC misses are
still pending so there is no reason to wake up the core just yet.
After the core is woken up, all pending loads in the MSHR
table will be re-issued to the L1 cache. To avoid a deadlock,
these re-issued requests will not ask the processor to sleep,
even if they result in an LLC miss.

In the NVSleep framework the cache controller of a sleep-
ing core is never shut down. This allows the cache controller to
initiate the wakeup process. It also ensures that all coherence
requests continue to be served even when the core is sleeping.
As a result, no changes to the coherence protocol are needed.

B. NVSleepBarrier

Parallel applications often use software barriers to coordi-
nate execution of multiple threads. These threads are some-
times unbalanced for algorithmic or runtime-related reasons.
As a result many cores may end up spending a significant
portion of time idle while waiting for slow threads to reach
barriers. NVSleepBarrier addresses this inefficiency by shut-
ting down cores blocked on barrier synchronization.

The NVSleepBarrier implementation uses the NVSleep
API through the sleep(0xADDR) instruction. The instruc-
tion is treated like a special load instruction that reads from the
0xADDR address. Figure 3 illustrates this process. When the
sleep(0xADDR) instruction is executed, a load from address
0xADDR is sent to the cache 1 . The cache allocates a line
for the data at 0xADDR and marks it as reserved by setting a
dedicated bit in the tag 2 . This reserved address will be used
to trigger the wakeup process.

The sleep() instruction also acts as a memory fence
instruction, not allowing any memory access reordering with
respect to the load to address 0xADDR. This will ensure
that when the sleep() instruction retires, there will be no
pending loads or stores in the cache that follow the sleep()
instruction in program order. This will allow the core to go to
sleep as soon as the sleep() instruction retires and no loads
will have to be re-issued when the core wakes up.

With this instruction in place, NVSleepBarrier requires
minimal changes to the standard software barrier implementa-
tion. Figure 4 shows code for the implementation of NVSleep-
Barrier in a generic sense-reversing barrier. The sleep()
instruction is executed by threads that block at the barrier.
The global “sense” variable address is passed as a parameter
to the sleep() instruction. As a result, the “sense” variable
becomes the wakeup trigger for all the sleeping cores. Since
threads that block on the barrier will only read the “sense”

void barrier(int count, int sense, int
num_threads)

{
int local_sense;
// Each core toggles its own sense.
local_sense = !sense;
if(count != num_threads-1) {
// Not the last thread, block.
while(local_sense != sense) {

// NVSleep instruction, with sense as
// wakeup trigger.
sleep(&sense);

}
} else {
// Last thread in the barrier.
count = 0;
// By writing to the sense variable
// blocked cores are woken up and
// subsequently released from barrier.
sense = local_sense;

}
}

Fig. 4: NVSleepBarrier implementation.

variable, they will not trigger a wakeup. The last thread to
reach the barrier will follow the else path through the code and
will write to the “sense” variable, inverting its direction. The
write will also trigger an “invalidate” message to the caches
of all blocked cores. This is illustrated in Figure 3 by steps
3 and 4 . These trigger messages will wake up the sleeping

cores, allowing them to resume execution 5 .

IV. EVALUATION METHODOLOGY

We modeled a 64-core CMP in 32nm technology. Each core
is a dual-issue out-of-order architecture. We used SESC [8]
to simulate the baseline SRAM-based CMP as well as the
NVSleep framework. Table III summarizes the architectural
parameters used in our simulations. We used CACTI [7] to
extract energy per access for all SRAM memory structures
including register file, reorder buffer, instruction window, etc.
CACTI was also used to model the energy and area overhead
for the banked SRAM memory structures (hybrid register file
and reorder buffer, etc).

For modeling STT-RAM structures we used data from [3]
for the access latency and energy and NVSim [2] to estimate
chip area overhead. We also model leakage power based on
estimated unit area and technology (CMOS vs. STT). We
plugged these energy numbers into the activity model of the
SESC simulator to obtain power consumption and energy.

We ran benchmarks from the SPEC CPU2000, SPLASH2
and PARSEC suites. The benchmark sets include single-
threaded and multithreaded benchmarks. Some parallel bench-
marks have heavy barrier activity while others use barriers
sporadically or not at all.

V. EVALUATION

We evaluate the energy and performance implications
of the two implementations of NVSleep: NVSleepMiss and
NVSleepBarrier. We also evaluate the time and energy cost of
checkpointing and show some sensitivity analysis results. We
compare NVSleep with a baseline system (SRAM Baseline)
in which all memory structures are built with SRAM. The
baseline system employs clock-gating of idle functional units
to reduce power.
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CMP Architecture
Cores 64, 32, and 16 out-of-order
Fetch/issue/commit width 2/2/2
Register file 76 int, 56 fp
Instruction window 56 int, 24 fp
L1 data cache 4-way 16KB, 1-cycle access
L1 instruction cache 2-way 16KB, 1-cycle access
Shared L2 8-way 2MB, 12-cycle access
Main memory 300 cycle access latency
STT-RAM read time 1 cycle
STT-RAM write time 10 cycles
STT-RAM read energy 0.01pJ/bit
STT-RAM write energy 0.31pJ/bit
SRAM read/write energy 0.014pJ/bit
Core wakeup time 30 cycles (10ns)
Coherence Protocol MESI
Technology 32nm
Vdd 1.0V
Clock Frequency 3GHz

TABLE III: Summary of the experimental parameters.

A. Application Idle Time Analysis

For the purpose of this analysis we define idle time as
cycles in which no instruction is retired and no instruction
is in execution in a functional unit. During those cycles the
processor is virtually stalled. Figure 5 shows the percentage
of idle time in the total execution time for single-threaded
benchmarks. The large number of misses in memory-bound
applications like mcf, equake, mgrid, and swim leads to idle
cycle counts that exceed 50%. Compute-bound applications
such as bzip2 on the other hand have very little idle time. We
expect NVSleepMiss to benefit memory-bound applications,
with little or no benefit to compute-intensive applications that
experience relatively few misses.

For multi-threaded applications, in addition to looking at
pipeline stalls due to LLC misses, we also examine idle time
spent by cores blocked in barriers. The idle time relative to
the total execution time broken down into pipeline stalls and
barrier blocked time is shown in Figure 6. We find that for
the multithreaded applications we examine, stalls due to LLC
misses account for very small fraction of execution time (less
than 2% on average). The amount of idle time spent in barriers
depends on two factors: the number of barriers and the level of
imbalance between work done by individual threads. Applica-
tions with large numbers of barriers such as streamcluster or
with significant imbalance such as lu and fluidanimate spend
up to 89% of their execution time idling inside barriers. ocean,
on the other hand, is stalled only about 4.7% of its time, even
though it runs through about 900 dynamic barrier instances.
This is because ocean is very balanced, with threads reaching
barriers almost simultaneously and leaving them rapidly. We
expect unbalanced applications to benefit most from from
NVSleepBarrier. Naturally, benchmarks that use no barriers
such as dedup will see no benefit from NVSleepBarrier.

B. NVSleep Energy Savings

Figure 7 shows the energy consumption for NVSleepMiss
relative to the SRAM baseline for single-threaded benchmarks.
Applications with high number of misses and frequent stalls
benefit greatly from NVSleepMiss. For example, mcf with
the longest idle time achieves 54% energy reduction using

NVSleepMiss compared to the baseline. Similar energy re-
duction is achieved by equake, mgrid, and swim. On average,
the energy savings of NVSleepMiss are 17.2% for SPEC Int
benchmarks and 23.3% for SPEC FP benchmarks.

We compare NVSleepMiss with two reference designs.
One is the NVSleep framework with the sleep option disabled
– we call this NVNoSleep. In NVNoSleep all energy savings
come from leakage reduction from STT-RAM structures. On
average, energy is 8-15% higher for NVNoSleep compared
to NVSleepMiss. We also compare to an ideal version of
NVSleep that has no checkpointing overhead (NVSleepIdeal).
NVSleepIdeal is 3.3% and 9.1% more energy efficient than
NVSleepMiss for SPEC Int and SPEC FP, respectively.

For the multithreaded benchmarks we examine the energy
benefits of NVSleepMiss, NVSleepBarrier, and the combined
application of the two techniques (NVSleepCombined). Figure
8 shows the energy savings achieved by the three NVSleep
techniques compared to the baseline. Applications with fewer
than 10 barriers get virtually no benefit from NVSleepBarrier.
For applications with more than 10 barriers the energy savings
depend on the level of workload imbalance and the number of
barriers. For lu, which is extremely unbalanced, the energy
reduction exceeds 80%. streamcluster has over 4000 barriers
but is fairly balanced. Its energy reduction is 22.1%. On
average, applications with more than 10 barriers achieve a very
significant energy reduction of 33.8% with NVSleepBarrier.
This represents a 22.4% improvement over NVNoSleep.

NVSleepMiss does not help much in the case of multi-
threaded benchmarks since miss-related idle time is small. As
a result NVSleepCombined is only marginally more energy
efficient than NVSleepBarrier.

C. NVSleep Overheads

1) Performance: Figures 9 and 10 show the runtimes
of NVSleep implementations for single-threaded and multi-
threaded benchmarks respectively. There are mainly two
sources of performance overhead in NVSleep. The first one
is caused by the pipeline drain required to shut down cores in
consistent startes. This drain mean that cores resume execution
after a shutdown with fewer instructions in their instruction
windows than they would otherwise have available. This might
slow down execution in some cases after the core is woken up.

The other source of performance overhead is related to
the way NVSleep handles multiple LLC misses that occur in
close temporal proximity. In NVSleep, a core is only woken up
after all LLC misses have returned. As a result, the core will
miss the opportunity to work on some instructions that are
dependent on data that has become available since the core
has been shut down. This explains why we observe more than
5% performance overhead in benchmarks like mcf, art, and
swim, in which multiple misses per sleep event are common.
On average, the performance overhead of NVSleepMiss is less
than 3% and that of NVSleepBarrier and NVSleepCombined
is less than 1%.

2) Area: The NVSleep framework has some area overhead
due to the banked SRAM blocks and STT-RAM shadow
structures. According to CACTI and NVSim simulations with
our area model, the 8-bank NVSleep framework design will
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Fig. 7: Energy consumption of NVSleepMiss for single-threaded benchmarks relative to SRAM baseline.
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Fig. 10: Runtime of different NVSleep designs for multi-threaded benchmarks.
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ent STT-RAM write latencies, relative to NVNoSleep.

increase the processor core area by 60%. However, since STT-
RAM is much denser than SRAM, the cache area is only 16%
of the baseline design. Overall, the total chip area overhead of
NVSleep adds up to less than 3% of the SRAM baseline.

D. Sensitivity Studies

The main overhead of STT-RAM is high write latency.
To better understand its impact on overall energy savings,
we experimented with various STT-RAM write pulses ranging
from aggressive 2ns to conservative 13ns. Figure 11 shows
that average energy savings for NVSleepMiss with single-
threaded benchmarks gradually become smaller as the STT-
RAM write latency increases. When the write latency reaches
11ns NVSleepMiss saves almost no energy. On the other hand,
since checkpointing is rare in NVSleepBarrier, the increasing
STT-RAM write latency has almost no impact on the overall
energy savings of NVSleepBarrier. All our previous experi-
ments have assumed an STT-RAM write latency of 3.3ns, also
used in prior work [3].

The number of banks in the hybrid SRAM/STT-RAM
structures has an impact on the overall energy savings because
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Fig. 12: NVSleepMiss energy for different numbers of banks.

Num of Banks energy/access (nJ) area (mm2)
1 0.000448 0.007543
2 0.000552 0.012091
4 0.000628 0.018883
8 0.000741 0.029032

TABLE IV: Energy and area for banked 1KB 32-bit SRAM.

it directly affects the performance and energy overhead of
checkpointing. Figure 12 shows the energy consumption of
NVSleepMiss with the hybrid memory structures configured
with 1,2,4 and 8 banks. We show average energy across the
SPEC benchmarks. Using higher number of banks reduces
performance overhead parallelism because all banks can be
checkpointed in parallel. However, increasing the number of
banks also has an energy and area cost. The energy and area
sensitivity with the number of banks is shown in Table IV. The
optimal configuration for our system was the 8-bank design.

To examine the scalability of NVSleepBarrier we run the
same experiments on simulated 16 and 32 core systems in
addition to the 64 core system. In general, we observe that
NVSleepBarrier saves more energy in higher core count sys-
tems. This is because barrier idle time and workload imbalance
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Fig. 13: NVSleep energy savings in CMPs with 16, 32, and
64 cores.

tends to increase with the number of cores. NVSleepBarrier
lowers energy by 24% on the 16-core system, by 29.3% on the
32-core system, and by 33.8% on the 64-core system. Energy
savings from NVSleepMiss are only marginally higher with
increasing number of cores.

VI. RELATED WORK

As STT-RAM has gained more and more attention recently,
many researchers have focused on solving the long-latency
and high-energy write issues associated with the technology in
order to make it a feasible SRAM replacement. For instance,
Zhou et al. [13] proposed Early Write Termination to terminate
redundant bit writes at their early stages to reduce write energy.
Other work [10], [12] has explored factors which could affect
data retention time of STT-RAM cells and found that there
is a trade-off between non-volatility and write performance
and energy of those cells. By relaxing the non-volatility
requirement they observe that they can improve energy by
using shorter write times.

Guo et al. [3] explored replacing large, wire-delay domi-
nated SRAM arrays, such as caches, TLBs, and register files
with STT-RAM. Some of the latency-critical units as well as
pipeline registers are implemented using SRAM. They have
built an in-order 8-core processor with this hybrid design.
Their goal is to save energy by replacing high-leakage CMOS
with low-leakage STT-RAM. Their design is similar to our
NVNoSleep system except that we use out-of-order cores,
hybrid SRAM/STT-RAM structures for memory units that
are updated frequently and similar structures for the pipeline
registers. We show that significant energy reductions can
be achieved by aggressively turning cores off when idle, in
addition to simply replacing SRAM with STT-RAM.

Previous work [9] has proposed building the last level cache
or main memory with non-volatile memory like STT-RAM or
PCRAM (Phase Change RAM) to provide checkpointing capa-
bilities for reliability and/or power reduction. Their solution is
targeted at coarse-grained server/system level checkpoints that
can tolerate much higher checkpointing/restore overheads. Our
checkpointing has much lower performance overhead.

Smullen et al. [10] and Sun et al. [12] have explored factors
which could affect data retention time of STT-RAM cells
and found that there is a trade-off between non-volatility and
write performance and energy. Kvatinsky et al. [6] proposed a
memristor-based multistate pipeline register design to provide
a low penalty switch-on-event multithreading capabilities.

To the best of our knowledge this is the first paper that
exploits the non-volatility properties of STT-RAM to enable
microarchitecture-level rapid checkpoint/restoration of cores
with the goal of saving energy.

VII. CONCLUSION AND FUTURE WORK

Non-volatile memory can be used effectively to implement
rapid checkpoint/wakeup of idle cores. This paper has explored
a framework for implementing rapid checkpoint using STT-
RAM and two applications of that framework: NVSleepMiss
and NVSleepBarrier. Evaluation showed average energy sav-
ings of 21% for NVSleepMiss in single-threaded applications
and 34% for NVSleepBarrier in high barrier count multi-
threaded workloads, both with very small performance over-
head. In future work we will explore other opportunities for
shutting down cores when idle such as spinning due to lock
contention or other synchronization events.
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