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Abstract—DNNs are known to be vulnerable to so-called
adversarial attacks, in which inputs are carefully manipulated to
induce misclassification. Existing defenses are mostly software-
based and come with high overheads or other limitations. This
paper presents HASI, a hardware-accelerated defense that uses a
process we call stochastic inference to detect adversarial inputs.
HASI carefully injects noise into the model at inference time
and used the model’s response to differentiate adversarial inputs
from benign ones. We show an adversarial detection rate of
average 87% which exceeds the detection rate of the state of the
art approaches, with a much lower overhead. We demonstrate
a software/hardware-accelerated co-design, which reduces the
performance impact of stochastic inference to 1.58×−2× relative
to the unprotected baseline, compared to 14 × −20× overhead
for a software-only GPU implementation.

Index Terms—Adversarial attack, Security, Accelerator, Spar-
sity

I. INTRODUCTION

Deep neural networks (DNNs) are rapidly becoming in-
dispensable tools for solving an increasingly diverse set of
complex problems, including computer vision [16], natural
language processing [8], machine translation [3], and many
others in different applications. Some of these application
domains, such as medical, self-driving cars, face recognition,
etc. require high accuracy outputs in order to gain public trust
and widespread commercial adoption. Unfortunately, DNNs
are known to be vulnerable to so-called ”adversarial attacks”
that purposefully compel classification algorithms to produce
erroneous results. For example, in the computer vision domain,
a large number of attacks [5], [6], [12], [17], [22], [24], [25],
[27] have demonstrated the ability to force state-of-the art
classifiers to misclassify inputs that are carefully manipulated
by an attacker. In most of the attacks, input images are only
slightly altered such that they appear to the casual observer
to be unchanged. However the alterations are made with
sophisticated attacks that, in spite of the imperceptible changes
to the input, result in reliable misclassification.

Figure 1 shows an examples of adversarial images generated
using the state-of-the art CW-L2 attack [5]. The leftmost
top and bottom image is benign, unmodified samples that is
correctly classified by a DNN (VGG16) with 87% confidence.

This work was funded in part by the National Science Foundation under
awards CCF-2028944 and CCF-1629392.

The middle and rightmost pair of image represents the output
of two versions of the CW-L2 attack, each resulting in
misclassification. Note that all adversarial images are virtually
indistinguishable from the original to the casual observer, even
though the confidence of the classifier is very high.
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Fig. 1. Benign vs Adversarial Images.

Several defenses have been proposed to address adversarial
attacks [4], [9], [20], [21], [26], [36]. Many of these defenses
follow approaches with the following limitations: (1) model
hardening, which requires re-training and is not easily adapt-
able; (2) rely on certain characteristics of the dataset and do not
generalize without profiling; and/or (3) have purely software
implementations with potentially very high overheads, limiting
their utility to real-world applications. Only a few hardware-
accelerated defenses have been proposed. DNNGuard [34] re-
lies on a separate dedicated classifier for detection, which also
comes at a high cost. [13] takes advantage of approximation
to make the models more robust. However the approach is not
adaptive and the source of the noise within the approximation
is input dependent, which makes the defense easily vulnerable
to adaptive attacks.

This paper presents HASI, a hardware/software co-designed
defense that relies on a novel stochastic inference process to
effectively defend against state-of-the art adversarial attacks.
By carefully injecting noise into the model during inference,
we can differentiate adversarial inputs from benign ones. HASI
is a dynamic approach in which noise is injected throughout
the model during inference. HASI is the first work to recognize
the correlation between classification confidence and the prob-
ability that an adversarial image will be detected. Building on
this observation, HASI uses adaptive noise injection, increas-
ing the level of injected noise for inputs with high confidence
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classifications. This results in robust detection across a broad
set of attacks with high accuracy and low false positive rate.
We show an adversarial detection rate of 86% when applied to
VGG16 and 88% when applied to ResNet50, which exceeds
the detection rate of the state of the art approaches. We also
show that HASI is robust against attacks that are aware of the
defense and attempt to circumvent it.

In order to reduce the performance impact, we propose
an accelerator design we call a Dynamically Sparsified CNN
(DySCNN). In this design, noise is introduced into the network
by randomly dropping weights from the model, effectively
sparsifying the network. The degree of sparsification is dy-
namically changed based on the confidence of the initial
classification. The HASI hardware/software co-design reduces
the performance impact of stochastic inference to 1.58×−2×
relative to the unprotected baseline, compared to 14×−20×
overhead for a software-only GPU implementation.

II. THREAT MODEL

We assume in this paper that the adversary has complete
access to the network, including the output prediction and
logits, with full knowledge of the architecture and parameters,
and is able to use this in a white-box manner. We focus
mainly on recent state-of-the-art optimization-based attacks
CW [5] and EAD [6] since it has been demonstrated that all
earlier attacks can be overcome utilizing other methods, such
as adversarial training [11] or defensive distillation [26], which
could be used in combination with our approach. Additionally,
we verify our evaluation includes high confidence adversarial
examples, as some previously proposed defenses were later
shown to perform poorly under a more holistic treatment
which included these inputs [19].

III. BACKGROUND

A. Adversarial Attacks

Adversarial attacks were first introduced by Szegedy et
al. in [32], which showed that despite the high accuracy
of machine learning models, small perturbations to inputs
can reliably force misclassifications–while the perturbed input
remains indistinguishable from the original seed to the naked
eye. The objective of an adversarial attack is to force the output
classification for some maliciously crafted input x′, based on
a benign input x, to be incorrect with respect to x. Attacks
can be targeted, where the adversary’s goal is for x′ to be
misclassified as a particular class t, or untargeted, such that a
misclassification of x′ to any class other than the correct class
of x (ground truth) is sufficient.

B. Robustness in Neural Networks

Robustness can be informally defined as the measure of how
difficult it is to find adversarial examples close to their original
inputs. Several methods for designing robust neural networks
to adversarial attacks have been proposed in the literature.
These methods typically fall into four broad categories [2]:
1) hardening the model, 2) hardening the test inputs, 3)

adding a secondary-external network, and 4) modifying the
network post-training.

Unlike model and input hardening approaches [26], HASI
does not require any re-training or input pre-processing of the
model and sacrifices little in model accuracy. HASI is designed
to detect adversarial examples post-training, during model in-
ference. HASI does require multiple inference passes, but data
reuse optimizations help to alleviate this overhead. HASI noise
injection allows for detection to be more easily generalized,
as opposed to other methods which require profiling to select
appropriate parameters, such as Feature Squeezing [36] and
Path Extraction [10], [28].

IV. IMPACT OF MODEL NOISE ON CLASSIFICATION
OUTPUT

Prior work such as [7], [15], [18], [29] have shown that
adding some amount of random noise to images can help
DNNs correctly classify adversarial inputs. The hypothesis
advanced by prior work is that high-quality adversarial inputs
that have low distortion occur with low probability, which
means they reside in small and low-density pockets of the
classification space [21], [31]. Therefore injecting noise into
inputs has a high probability of moving adversarial inputs out
of the low density pockets into the correct classification. At
the same time, an equal amount of noise is less likely to result
in misclassification of benign inputs.

In this work we build on these prior observations to con-
struct the proposed defense. However, instead of focusing on
correctly classifying adversarial inputs, we instead build a
mechanism for detecting them with higher accuracy. The key
novel observations we make in this work is that injecting noise
in the model - rather than the input - and adapting the amount
of noise to the confidence of the classification improves the
ability to detect stronger adversarial inputs, for which correct
classification cannot be achieved.

To achieve this goal, we focus on the impact of model noise
injection on the probability distributions of the classification
outputs. We use the L1-norm metric to measure the impact
of model noise on inference output probability distributions.
The L1-norm is the sum of the absolute pair-wise differences
between elements of two vectors. We measure the L1-norm
difference between the output probability distribution vectors
of noisy and non-noisy runs of the same inputs. Figure 2 shows
the L1 distance distributions for sample of 1000 benign and
adversarial images.

Figure 2 (a) and (b) shows the L1 distance distributions for
benign (blue line) and adversarial (red line) inputs, when 10%
and 90% noise is injected in all activation layers. Each data
point represents the L1 distance between the output vector of a
noisy run and that of a non-noisy run of the same input. Mean
and one standard deviation from the mean is also highlighted.
We can see that the two distributions (benign and adversarial)
are almost identical, with low L1 distance values for 10%
noise. For 90% noise the L1 distance values shift to the right
and still it cannot separate two distribution with clear margins.
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Fig. 2. L1 distance distributions for benign and adversarial images
under varying levels of noise, for VGG16 (and ResNet50).

Finally, Figures 2 (c) and (d) show the L1 distance distribu-
tions for an adaptive noise injection approach in which we vary
the amount of noise injected as a function of the confidence of
the classification. The higher the classification confidence, the
higher the level of noise we inject into the model. Tailoring
the level of noise to the confidence helps detect well-trained
high confidence adversarials, while reducing the likelihood
of misclassification of benign images. The adaptive noise is
the most successful at generating a large distance between
distributions of benign and adversarial images, improving
detection accuracy. As a result, we use adaptive noise injection
in the HASI framework.

V. HASI STOCHASTIC INFERENCE

The HASI framework relies on the L1 distance observation
to detect adversarial inputs. Initially, a first inference pass
through the network is performed without noise injection to
establish a reference. The output classification is recorded
as P b. This is followed by another inference pass, this time
with noise injected into the model, with output PNSpr. The
confidence of the classification P b is used to determine
the amount of noise to be injected. Next, the L1 distance
between the output vectors of the noisy (PNSpr) and non-
noisy (P b) inference passes is computed and compared with
detection threshold values. If the measured L1 distance is
either very high or very low (< t′1 or > t′2 in Figure 2-d)
the input image can immediately be classified as benign or
adversarial, respectively. Otherwise, HASI cannot yet make a
high-confidence detection, and another noisy inference pass is
required. The average L1 distance over all the previous noisy
runs is computed and compared with the more conservative
thresholds t1 and t2 for detection.

A. Noisy Sparsification

In order to reduce the performance impact of the second
inference pass, we use dynamic model sparsification to intro-

duce model noise. This process, called ”noisy sparsification”,
introduces noise into the DNN by randomly ”dropping” (es-
sentially ignoring) weights from the model. The fraction of
dropped weights (”sparsification rate”) controls the amount
of noise. The sparsification rate for each input is determined
based on the classification confidence of the non-noisy run of
that input.

The main advantage of Noisy Sparsification is the poten-
tial reduction in performance overhead of noisy inference.
However, exploiting sparse filters to reduce computation time
is challenging because of the workload imbalance across
otherwise homogeneous compute units. This is even more
challenging in the case of HASINSpr because the filter
sparsity changes randomly from run to run.

Since the sparsification is dynamically changing most of the
designs are not efficient to leverage the sparse computation
in HASI. In order to address the challenges of dynamic
sparsification in HASI we developed a hardware-software co-
designed accelerator for a dynamically sparsified model, based
on the TensorDash [23] architecture. We call our design a
Dynamic sparsified CNN (DySCNN) accelerator.

DySCNN consists of two components: 1) software scheduler
and 2) hardware accelerator.

The software scheduler (Figure 3) handles two main tasks:
I) one-time offline profiling ( 1 ) and II) online scheduling( 2 ).
In order to reduce the overhead of online sparsification, the
DySCNN Scheduler parses the model offline and generates
a table of threshold values for each filter, corresponding to
different sparsification rates. The threshold values will be used
by the scheduler to determine which weights to be dropped
based on the sparsification rate that randomly assigned to each
filter at run time.
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Fig. 3. DySCNN software scheduler and hardware acceleration.

At run time the sparsification rate generator issues sparsi-
fication rates for each kernel and retrieves the corresponding



threshold values. Once a threshold is assigned all weigths with
values below that threshold will be ignored. The scheduler
then selects filters with similar numbers of active weights and
groups them before deployment on the accelerator. This will
increase the efficiency of the inference run by reducing load
imbalance and the number of idle cycles. The Scheduler also
creates bit masks which represent active and dropped weights.
The bit mask will be used by a MUX signal generator ( 3 ) in
the accelerator hardware to map the correct inputs to the active
weights. We used a look-ahead mechanism similar to that in
[23] to match inputs and weights. However, DySCNN reduces
the complexity of the design in [23] because it relies on the
software scheduler to balance the number of active weights
across compute lanes. Note that only active weights will be
loaded into the weight buffers of the accelerator memory;
dropped weights will be ignored, saving memory energy.

VI. EVALUATION

A. Methodology

As a proof-of-concept, we implement HASI in a FPGA-
based DNN accelerator, the Xilinx CHaiDNN architecture
[35]. We modified CHaiDNN software stack to include the
HASI API. We synthesize and deploy CHaiDNN+HASI on
a Xilinx Zynq UltraScale+ FPGA. We compare our FPGA
accelerator with software implementation of HASI on a CPU
and GPU using TensorFlow2.2 [1]. We run our software
HASI on Intel Core-i7 CPU@3.40GHz and NVIDIA RTX-
2060 Turing GPU . We used two networks VGG16 [30]
and ResNet50 [14] trained on ImageNet [16] for running
attacks and generating adversarial images. Attacks aim to
misclassify an input into a target class, use two types of
targets 1) Next likely class and 2) least likely class (LL).
Table I summarizes the adversarial attacks alongside their
detailed parameters and average L2 distortion. We compared
our detection rate of adversarial as well as True Positive
rate (TPR) of benign images with Feature squeezing (FS)
[36] which is a correction-detection mechanism that relies on
reducing the input space (and attack surface) by ”squeezing”
images. FS requires off-line profiling and training to find the
best squeezer and corresponding thresholds for each pair of
data-set and attack, making it less practical to deploy in real-
world applications.

B. Adversarial Detection Rate

Table I lists the detection rate for all the attack variants
we evaluate, for both VGG and ResNet. The results show that
HASINSpr outperform FS on average. HASINSpr shows an
average detection rate of 86% and 88% for VGG and ResNet,
respectively. HASINSpr significantly outperforms the state of
the art defense, FS which averages 55% and 79% for VGG
and ResNet, respectively. HASINSpr is especially strong at
detecting more recent, high-confidence attacks, for which FS
does not work as well. Prior work has shown that increasing
the factor k improves the strength of the adversarials at the
cost of somewhat higher input distortion. For instance, under
the EADL1 attack with k = 70 we see 93% detection rates

TABLE I
ATTACK PARAMETERS OF CW AND EAD ATTACKS. ATTACKS DETECTION

RATES FOR DEFENSES FS AND HASI.

Attacks Defenses (detection %)

Attack Target Param k L2 Distortion FS+ HASINSpr

VG RN VGG RNet VGG RNet VGG RNet

CWL0
Next 5 5 10.44 6.26 100 100 67 82
LL 13.65 8.33 100 100 100 100

CWL2

Next 10 30 1.69 1.63 84 89 91 100
LL 2.24 2.07 100 100 100 100

Next 70 140 7.43 9.22 6 48 84 89
LL 8.07 11.56 9 67 96 98

CWL∞
Next 5 5 2.27 1.6 91 96 83 89
LL 3.05 2.12 100 100 100 100

EADL1

Next 10 30 2.69 2.79 78 98 91 98
LL 3.56 3.47 100 98 100 100

Next 70 140 9.92 12.34 4 45 78 88
LL 10.65 17.36 4 81 93 84

EADEN
Next 10 30 4.36 6.73 63 89 80 94
LL 5.9 8.59 98 98 99 97

RNet: ResNet50, VGG: VGG16 AVG 55 79 86 88
+threshold: VGG: 1.022, ResNet: 1.229 FPR 6 3 6 6

with the HASI designs vs. 4% for FS (VGG16). This shows
that HASI is resilient to very strong attacks which still have
acceptable quality with minor visible changes to the image.
See Appendix B for additional analysis on attack strength.

C. HASI-Aware Attacks

We also examine a modified attack that assumes knowledge
of the HASI design and is optimized to defeat it. We used the
approach suggested in [33] to generate adversarial examples
(details in Appendix A). Table II summarizes the adaptive
attack parameters and detection rate under HASI. β is reg-
ularization that tune the trade-off between L2 distortion and
L1 distance. We can see that for low-β attacks, HASI detection
rate is very high (A1-A3). For β = 10−1 the detection rate
is lower, but still acceptable for VGG. This shows HASI
is resilient to HASI-aware attacks that optimize for low L1

distance.
TABLE II

HASI AWARE ADAPTIVE ATTACKS

Attack β
Mean Confidence L2 Distortion HASI detection
VGG RNet VGG RNet VGG RNet

A1 10−4 94.3% 95.9% 3.91 2.71 99% 100%
A2 10−3 92.3% 94.0% 2.48 1.42 99% 100%
A3 10−2 96.1% 96.9% 10.14 8.45 95% 84%
A4 10−1 97.7% 97.9% 41.58 46.99 81% 39%

D. Performance Overhead

We next examine the performance overhead of the HASI
design. Figure 4 shows the average normalized run time of
HASI on different platforms. The runtime overhead of HASI
on GPU is 6× to 20× higher than the baseline, due to the inef-
ficiency of dynamic sparsification. For the CPU these numbers
are 2.25× and 3×. The noisy sparsification accelerator reduces
the overhead to 1.99× and 1.6× for VGG16 and ResNet50,
respectively. FS also requires at least 3 squeezers, resulting in
at least 4× performance overhead.

VII. CONCLUSION

In conclusion, this paper showed that adaptive noise in-
jection in DNN models enables robust > 90% adversarial
detection across multiple strong attacks, for different image
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classifiers. We also showed HASI’s robustness against attacks
that are aware of the defense and attempt to circumvent it.
We demonstrated a hardware/software co-designs of HASI to
reduce the performance impact of stochastic inference to 1.6×
and 1.99× for ResNet50 and VGG16 respectively.
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APPENDIX

A. Adaptive Attack Design Details

In HASI aware attack, for sample x of class y, we pick a
target t 6= y and create adversarial example x′ that minimize
the objective:

minimize ||y(x′)− y(xt)||1 (1)

where y(x′) and y(xt) are the probability vector of adversarial
and target input respectively. While we try to minimize the L1

distance between adversarial and the benign target, we need to
also minimize the adversarial perturbation under L2 distortion
metric. The final objective function would be:

minimizex cf(x, t) + β||y(x′)− y(xt)||1 + ||x− x0||22
such that x ∈ [0, 1]n

(2)

where f(x,t) denotes the loss function and β is regularization
parameter for L1 penalty. Increasing β forces a lower L1

distance between the adversarial and target benign and will
result in same behavior as a legitimate image under noise for
the generated adversarial.

Figure 5 shows the effect of β on the L1 distance of
probability distribution and L2 distortion. Optimizing for both
low L2 distortion and L1 distance are competing objectives.
Increasing β will minimize the L1 distance but incur higher
L2 distortion. While low values of β decrease the L1 distance,
the attack cannot lower it below HASI’s detection threshold.
On the other hand, increasing β causes the L2 distortion to
surge also reduces the attack success rate.
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Fig. 5. L1 distance vs. L2 distortion for different β values.

Figure 6 shows a couple of adversarial images generated
with different β values. Adversarials with β = 10−1 that can
defeat HASI have noticeable perturbations and can be detected
through other means.

B. Attack Strength Analysis

Figure 7 further details the effect of adversarial strength
on the adversarial detection rate for HASI and FS as a
function of k for CW and EAD attack. Increasing the factor k
(shown on the x-axes) improves the strength of the adversarials
while maintaining the L2 distortion in a reasonable range. For
VGG16 the FS detection rate decreases to below 7% and 5%
for CW and EAD while HASI maintains its detection rate
above 78% and 62% for CW and and EAD respectively. For
ResNet50, FS detection rate also degrades for higher k for
EAD but HASI maintains detection rate above 90%. The main

Benign β=10−4 β=10−3 β=10−2 β=10−1

Fig. 6. Adversarials generated by HASI-aware attacks.

reason for why HASI scales better with the strength of the
attack is that HASI adapts the level of noise injection to the
confidence of the classification.
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Fig. 7. Detection rate for different k values and targets, (a) VGG16
and (b) ResNet50
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