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Abstract—DNNs are known to be vulnerable to so-called
adversarial attacks that manipulate inputs to cause incorrect
results that can be beneficial to an attacker or damaging to the
victim. Recent works have proposed approximate computation as
a defense mechanism against machine learning attacks. We show
that these approaches, while successful for a range of inputs,
are insufficient to address stronger, high-confidence adversarial
attacks. To address this, we propose DNNSHIELD, a hardware-
accelerated defense that adapts the strength of the response to
the confidence of the adversarial input. Our approach relies on
dynamic and random sparsification of the DNN model to achieve
inference approximation efficiently and with fine-grain control
over the approximation error. DNNSHIELD uses the output distri-
bution characteristics of sparsified inference compared to a dense
reference to detect adversarial inputs. We show an adversarial
detection rate of 86% when applied to VGG16 and 88% when
applied to ResNet50, which exceeds the detection rate of the
state of the art approaches, with a much lower overhead. We
demonstrate a software/hardware-accelerated FPGA prototype,
which reduces the performance impact of DNNSHIELD relative
to software-only CPU and GPU implementations.

I. INTRODUCTION

Deep neural networks (DNN5s) are rapidly becoming indis-
pensable tools for solving an increasingly diverse set of com-
plex problems, including computer vision, natural language
processing, machine translation, and many others. Some of
these application domains, such as medical, self-driving cars,
face recognition, etc. expect high robustness in order to gain
public trust and achieve commercial adoption. Unfortunately,
DNNs are known to be vulnerable to so-called “adversarial
attacks” that purposefully compel classification algorithms to
produce erroneous results. For example, in the computer vision
domain, a large number of attacks [6], [37], [38], [L8], [71,
[29], [43]], [35] have demonstrated the ability to force state-of-
the art classifiers such as Inception[53], VGG[52], ResNet[20],
etc. to misclassify inputs that are carefully manipulated by
an attacker. In most attacks, input images are only slightly
altered such that they appear to the casual observer to be un-
changed. However the alterations are made with sophisticated
algorithms which, in spite of the imperceptible changes to the
input, result in reliable misclassification.

Several defenses have been proposed to address adversarial
attacks [33], [42], [60], [12], [3l], [34]. Most rely on purely
software implementations, with high overheads, limiting their

utility to real-world applications. A recent line of research
has explored hardware-assisted approximate computing to
introduce controlled errors into the inference process, either
through model quantization [15]], [41] or approximate compu-
tation [19]. This inference approximation disrupts the effect of
the adversarial modifications, making the attacks less likely
to succeed. At the same time, if the errors are kept small,
approximate inference tends to have less effect on benign
inputs’ classification accuracy.

We investigate the scalability of defensive approximation
approaches to a broader class of attacks. We find that, while
approximation methods work well for some inputs, they do
not scale well to strong adversarial attacks that are trained to
have high classification confidence. This is because the noise
introduced through approximation is insufficient to reverse
the adversarial effects. We also show that, even if noise is
increased, full recovery of strong adversarials is less likely.
We therefore argue that defensive techniques should focus on
detecting adversarial inputs, which has higher probability of
success, rather than recovery of the original class.

This paper presents DNNSHIELD, a hardware/software co-
designed defense that takes a different approach to infer-
ence approximation and addresses some of the limitations
of prior approaches. DNNSHIELD is an online adversarial
detection framework that uses the effects of model sparsifi-
cation to discriminate between adversarial and benign inputs.
DNNSHIELD runs both precise and sparse inference passes for
each input and compares their output. It then uses the deviation
in output classification that is triggered by the sparsification
to classify the inputs as benign or adversarial.

A key observation we make in this work is that tailoring
the approximation error rate to the confidence of the
input classification dramatically increases the adversarial
detection rate, while at the same time maintaining a low false
positive rate for benign inputs. DNNSHIELD is the first work
to recognize the importance of this correlation for accurate
adversarial detection. Unlike prior work, DNNSHIELD dy-
namically and randomly varies the approximation error and
distribution. Dynamic approximation error is needed to adapt
to the confidence of diverse inputs. Randomness in the error
distribution is crucial in ensuring that adversaries cannot re-
train to account for predictable inference noise.



To achieve these goals DNNSHIELD uses hardware-assisted
dynamic and random model sparsification to implement ap-
proximate inference. Model sparsification involves dropping
weights from the model, and has been used to improve
performance and energy efficiency [10], [L7]. DNNSHIELD
controls the sparsification rate dynamically to enable flexible
control over the approximation error. Sparsification is also
random to make the noise input independent and consequently
training defense-aware attacks difficult.

DNNSHIELD demonstrates robust detection across a broad
set of attacks, with high accuracy and low false positive rate.
We show an adversarial detection rate of 86% when applied to
VGG16 and 88% when applied to ResNet50, which exceeds
the detection rate of the state of the art approaches. We also
show that DNNSHIELD is robust against attacks that are aware
of our defense and attempt to circumvent it.

DNNSHIELD requires multiple inference passes, increasing
inference latency. To mitigate this overhead we propose a hard-
ware/software co-designed accelerator aimed at reducing the
performance overhead. The accelerator design builds explicit
support for dynamic and random model sparsification. The
DNNSHIELD accelerator is optimized for efficiently executing
sparsified models in which the sparsification rate changes as
a function of the input — which is more challenging compared
to models for which weight sparsity is fixed. We show that
the DNNSHIELD accelerator reduces the performance im-
pact of approximate inference-based adversarial detection to
1.53 x —2x relative to the unprotected baseline, compared to
15x-25x overhead for a software-only GPU implementation.

This paper makes the following contributions:

o First work to use DNN sparsification as a dynamic and
random approximation-based defense against machine
learning attacks.

« First adaptive defense that adjusts the approximation error
in correlation with the confidence of the classification,
increasing detection accuracy even for strong attacks.

o Presents DNNSHIELD, a software/hardware-accelerated
co-design of the proposed defense and demonstrates its
robustness against defense-aware attacks.

o Evaluates DNNSHIELD through a proof-of-concept im-
plementation in the Xilinx CHaiDNN accelerator, show-
ing < 2.65% area overhead and < 5.1% power overhead.

II. BACKGROUND - ADVERSARIAL ATTACKS

Adversarial attacks were first introduced by Szegedy et al.
in [54]. The objective of an adversarial attack is to force the
output classification for some maliciously crafted input x/,
based on a benign input x. Attacks can be rargeted, where the
adversary’s goal is for x’ to be misclassified as a particular
class t, or untargeted, in which misclassification of X’ to any
other class is sufficient. Targeted attacks were formally solving
the following optimization problem [54]:

min d(z,x+0J)subject to: C(z+3J) =t, 2+ € [0,1]", (1)

where 0 is the added noise, ¢ is the desired target label
for the adversarial example produced by x + 4, and d is a

metric to measure the distortion from benign example and the
adversarial one. L, norm is widely used as distortion metric.
In this paper we refer to the Ly-norm as the distortion metric
which is Ly = /> (2 — x)2.

In this work we focus on two strong state of the art attacks.
The Carlini-Wagner (CW) attack [6] has been shown to be
very effective at creating adversarial images that looks very
similar to original inputs and is successful at attacking models
protected by defensive methods such as defensive distillation
[42]]. The CW attack uses the loss function:

loss(x') = max(max{Z(x'); i #t} — Z(2'), —k) (2)

where Z is the logit of classifier and k is controlling the
confidence with which the misclassification occurs.

The EAD attack [7] generalizes the CW attack by perform-
ing elastic-net regularization, linearly combining the L; and
Ly penalty functions. The EAD attack attains superior perfor-
mance in transfer attacks which can reduce the effectiveness
of defenses that are based on attack transfer such as [14], [[15]].
The EAD attack has also defeated several prior defenses [32],
(510, (491, (501,

III. MOTIVATION

Strong attacks such as CW and EAD can be tuned to
produce a class of adversarial inputs that present a significant
challenge to approximation-based defenses. Prior work has
shown that adversarial inputs can be constructed to induce
misclassification with very high confidence [S1], [4], [6]. In
other words, the victim model assigns a very high probability
to the adversarial input belonging to the wrong class. These
so-called “high confidence” adversarials can be constructed
while minimizing the distortion to original input.

A. High-Confidence Attack Variants

Figure |1| shows an example of multiple adversarial samples
for a benign image with different levels of classification
confidence and the corresponding distortion. To measure clas-
sification confidence we used the Z-score (the number of
standard deviations by which the value of a raw score is above
or below the mean value) of the maximum logit value, which
corresponds to the class with the highest confidence. Adv; is a
low distortion adversarial of the benign with low classification
confidence of 4.18. Adwv, is a high confidence example of
the same input with very high classification confidence of 12.
While distortion is also higher, it is still imperceptible to the
naked eye. We will show that existing defenses are ineffective
against this type of adversarial. Increasing the confidence
beyond 12 increased distortion significantly, as Advs shows.

B. Classification Confidence and Approximation

Approximate computing defense methods introduce noise
into the input and/or the model and often result in the recovery
of the original class. Figure [2] schematically illustrates how ap-
proximation can recover adversarial inputs. Figure 2] illustrates
the decision space of a classifier, with four output classes: C1,
Cs, C5 and CY4, represented as regions with different colors.
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Fig. 1. Benign and adversarial examples with various distortion and confi-
dence values.

The darkness of the color represents the confidence of the
classification. We consider a benign input X classified with
low in class Cy, and an adversarial sample Adv;(X7) that is
misclassified into class Cy with low confidence. The dotted
circles around each input represent the range of classification
outcomes as a result of noise.
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Fig. 2. Schematic illustration of decision regions of a base classifier. Different
classes are drawn in different colors with darker shades indicating higher
confidence. X1 and X5 are benign inputs, Advi(X1) and Adva(X7) are
low confidence and high confidence adversarial inputs generated from Xj.
The circles shows range of classification deviation under a certain amount of
noise.

Prior work has observed that high-quality adversarial inputs
occur with low probability, which means they reside in small
and low-density pockets of the classification space. As a
result, their output class distribution differs from that of their
closest data submanifold [13]]. We can see in Figure 2] (a) that
Advy(X7) resides in a narrow cone of class Co, where benign
images do not generally exist. This means that approximation
can easily change the classification of Adv;(X7) and move it
back into its original class, C.

In this work we show for the first time, that high-confidence
adversarials do not respond in the same way to approximation
errors. To illustrate why, let’s consider Advy(X7), a high-
confidence adversarial of X;. As Figure |Z| (a) shows, for the
same error, the classification area of Advz(X7) lands within
region Cb, failing to recover the original class Cf.

Figure [2] (b) shows that, if we increase the approximation
error, the probability of recovering Advs(X) increases. How-
ever, if the same approximation error is applied uniformly

to X, there is an increased probability that X; will be
misclassified, resulting in false positives.

In order to address this limitation, we propose correlating
the approximation error to the confidence of the classification.
Figure [2] (c) illustrates this with circles of different radii: small
radius corresponding to lower approximation error for X; and
Adv1(X71) — which are low confidence classifications — and
larger radius (approximation error) for Advi(X;) and a high
confidence benign, X2. We can see that the low error does not
lead to misclassification for X5, while recovering Adv; (X7)
with high probability. At the same time, a high error rate
will not lead to misclassification for X5, while increasing the
probability of recovering Advy (X7 ).

C. Approximation-Based Defenses

Prior work has used input noise and approximate inference
to improve model robustness against adversarial attacks. For
example, and [8] have shown that adding some amount
of random noise to images can help DNNs correctly classify
adversarial inputs.

Recent work has proposed using hardware-based approx-
imation methods as similar defenses. Guesmi et al.
proposed “Defensive Approximation” (DA) which used custom
approximate multipliers, to introduce controlled errors into
a CNN accelerator. Similarly, Fu et al. [I5] used hardware-
assisted parameter quantization as the approximation mech-
anism. Model quantization is the process of reducing the
precision of the model parameter representation, and has been
used to improve performance, energy and storage efficiency
of DNNs. In [15] a 2-in-1 hardware accelerator dynamically
chooses between 12 quantization levels to use at inference,
introducing approximation into the model. While these ap-
proaches are effective and have low overheads, they use either
fixed approximation error [19] or randomly-selected error from
a limited set of up to 12 precision levels [15]. In addition, both
techniques generate input-dependent noise, which an attacker
could reproduce to circumvent the defense.

In order to study the response of these approximation
techniques to high confidence adversarials, we re-implemented
both the DA and the 2-in-1 defenses for VGG16 and ResNet50
models. The original DA defense uses a single AMAS floating-
point based approximate multiplier. In order to explore a
wider range of approximation errors we use a set of seven
Int8 approximate multipliers from the Evoapproxlib library
[39]. We created approximated models using approximate
convolution (AxConv) implementations from [56], [40]. We
also used the quantized model from 2-in-1 [13] and gener-
ated high confidence adversarial samples targeting two fixed
quantization levels of 16 and 4-bit precision. We then tested
the 2-in-1 defense on these samples. We generated several sets
of adversarial samples with different classification confidences
by changing the k& parameter in the CW and EAD attacks.

Figure 3] (a) shows correction rate (percentage of adversarial
examples that are correctly classified by the approximate
inference) vs. adversarial confidence for two approximate
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Fig. 3. (a) Adversarial correction and (b) adversarial detection for different
defense methods versus confidence of adversarial attacks on VGG16 and
ResNet50.

multiplier versions DA(125K) and DA(KEM), and the two 2-
in-1 adversarial variants. For reference, we also include two
software-only approximation techniques: Feature Squeezing
(FS) [51]] and SAP [12]. We can see that most approximation
techniques perform relatively well with low and medium con-
fidence samples. However, as adversarial confidence increases,
correction rate drops below 20%. The software-only methods
perform the best, but they also have the highest overhead.
FS, which exhibits the highest correction rate, also has a 4x
performance/energy overhead.

Given the low correction rate of defense methods for high
confidence adversarial inputs, we also evaluated an adver-
sarial detection approach. Except F'S which has its own
detection methodology, for detection we simply compared
the classification outputs of the unprotected and protected
models for the same input. If the outputs do not match, the
input is classified as adversarial. The intuition behind this
approach is that the classification of adversarial examples is
more likely to change during approximate inference, although
the output classification may not be the correct one. This
is especially important for very strong adversarial examples
which are far from decision boundaries (e.g. Advy(X;) in
Figure 2), and approximation is unlikely to recover the correct
classification, as observed in [22]. However, as we will show
in this paper, approximate inference is sufficient to change
output distribution of all adversarials in a way that makes them
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Fig. 4. Adversarial detection and benign FPR for fixed versus adaptive
inference errors in VGG16.

detectable with high probability.

Figure El (b) shows adversarial detection for the same ad-
versarial inputs and defense methods. We can see that the de-
tection rate is much higher than correction for low-confidence
adversarials, but still drops below 50% for adversarials with
confidence greater than 8. FS performs better than other
methods, but it is still inadequate for high confidence samples.
We will compare DNNSHIELD with FS in our evaluation.

These results show that approximation methods used in
prior work, which use fixed error rates are insufficient to detect
high confidence adversarial examples.

D. The Case for Adaptive Approximation

The solution we propose in this work is to dynamically
adapt the level of error/approximation to the confidence of
the classification. To motivate an adaptive approximation over
simply increasing the approximation error, we conduct an
experiment in which errors are introduced directly into the
model, in the activation layers. Figure 4] shows the adversarial
detection rate and benign false positive rate (FPR) for fixed
and adaptive error rates. We can see that fixed errors below
50% have very low detection rates. Increasing the injected
error to 100% results in high detection rate, but at the cost of
an unacceptable 80% false positive rate. The Adaptive error
rate, correlated with the input confidence, achieves both high
adversarial detection and low benign FPR.

The next research question we tackle is how to introduce a
well controlled, variable and randomly distributed approxima-
tion error into the inference process in a performance-efficient
way. Unfortunately, approximate computation using approxi-
mate functional units does not offer sufficient flexibility to tune
the error rate since they are generally not easily tunable. The
same is true for quantization methods, which do not provide
sufficient granularity for the approximation errors. In addition,
both quantization and approximate computation tends to be
deterministic, producing predictable and reproducible error
distributions that can be exploited by an attacker.



IV. DNNSHIELD DEFENSE DESIGN

In order to address the aforementioned challenges we in-
troduce the DNNSHIELD framework, which includes a new
flexible and efficient mechanism to add controlled approxi-
mation into the model inference, a method to correlate the
amount of error introduced into the model to the confidence
of the non-noisy classification and a mechanism for using the
approximate inference to detect adversarial inputs.
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Fig. 5. (a) Baseline accelerator, (b) DNNShield accelerator tile.

A. Dynamic Random Sparsification

We set a few important criteria for our approximate infer-
ence design: (1) flexibility to tune the error rate dynamically
at runtime — to allow error rate to be correlated to input
confidence, (2) randomness of the error distribution — to make
defense-aware attacks less likely to succeed, and (3) low
overhead.

In order to satisfy these criteria DNNSHIELD introduces
noise into the DNN by randomly “dropping” (essentially

ignoring) weights from the model, through a process we
call dynamic random sparsification. The fraction of dropped
weights, or sparsification rate (SR) controls the amount of
error in the model. The sparsification rate for each input is
determined based on the classification confidence of the non-
noisy run of that input.

The main advantage of dynamic random sparsification is
the potential reduction in performance overhead. Prior work on
sparse convolution accelerators [9], [61], [27]], [44], [24], [L1],
[25]], [45], [36] targeted statically weight sparsed models with
the ultimate goal of improving performance/energy efficiency.
However, exploiting sparse filters is more challenging in
the case of DNNSHIELD because the filter sparsity changes
randomly from run to run. To address these new challenges
we developed a hardware/software co-design that profiles the
model first and performs scheduling for efficient resource uti-
lization. The hardware accelerator supports dynamic-random
sparse execution of the inference with minimum stalls with
the help of the software scheduler and flexible control flow.

B. DNNShield Accelerator

Figure E] shows the DNNSHIELD accelerator tile (b) com-
pared to a baseline Dense CNN accelerator (a). The baseline
design consists of N tiles which share k filters. Each tile shares
the same set of inputs and consists of &k x m MAC units
which perform k x m 8-bit multiplications per cycle. After
a total of £ x M (M = filter size) MAC operations, tree-
adders accumulate m partial results per output and generate
k outputs per tile. The baseline accelerator processes all
available weights uniformly, assuming no sparsity. Since the
DNNSHIELD random sparsification is a dynamic process,
using conventional sparse accelerators is not practical since
they require deterministic offline preprocessing of the statically
sparsed model to utilize the resources efficiently at runtime.
Our DNNSHIELD accelerator consists of two components: 1)
software scheduler and 2) hardware accelerator.

1) DNNShield Software: The DNNSHIELD software han-
dles two main tasks: 1) one-time offline profiling and 2)
runtime scheduling (Figure[6). In order to reduce the overhead
of online sparsification, the DNNSHIELD software parses the
model offline and generates a table of threshold values for
each filter, corresponding to different sparsification rates @.

At runtime, the SR distribution generator generates random
sparsification rates for each filter @), extracts the correspond-
ing threshold value for each filter from the threshold array, and
creates a threshold vector @). The threshold values are used
by the filter sparsifier to drop/ignore weight values below the
thresholds assigned to each filter @. At the same time, a bit
mask of active weights is generated, and will be used by the
hardware to map the correct inputs to the active weights @).

Finally, the scheduler groups the filters with roughly similar
number of active weights and places them in the task queue
@. This will increase the efficiency of the inference run
since the filters scheduled in the same group will require
similar numbers of multiply-accumulate operations, reducing
load imbalance and the number of idle cycles. Finally each
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group is sent to the accelerator together with the active weight
bit mask @.

2) DNNShield Hardware: The DNNSHIELD accelerator
modifies the baseline dense accelerator to leverage the dynam-
ically sparsified model. The DNNSHIELD scheduler attempts
to schedule the k filters with approximately the same number
of active weights. However, DNNSHIELD needs to make sure
that different weights in each kernel can get access to their
corresponding input with minimum stalling. For this purpose
we used a look-ahead mechanism similar to that in [36] to
match inputs and weights. Figure 5}b shows the DNNSHIELD
accelerator tile. The MUXes are added per each MAC unit to
deliver the correct inputs to the active weights in each filter.
The accelerator uses the active bit mask to generate the MUX
select signals and also identify the offset by which the input
window will be shifted every cycle.

Figure [7] shows an example of how sparse weights and their
corresponding inputs flow through for baseline accelerator
(Figure[7](a)) and through DNNSHIELD (Figure [7](b)). Figure

DNNSHIELD software consisting of offline model profiling and runtime filter sparsification and scheduling.

shows 4 filters sharing the input line within the tile. At
cycle 1 Iy is ready to be used by the MAC units sharing the
input, however, only two filters have corresponding weights
active (w2 and wg). While the baseline accelerator leaves two
MAC units underutilized, DNNSHIELD fully utilizes the MAC
units by performing 4 multiplication at cycle 1 due to the
flexibility of selecting appropriate input through MUXes on
top of each MAC unit. Therefore w{ and w] are consumed
by the MAC unit in the same cycle. Since no filter needs
Iy or I the next two inputs Is and I3 will be loaded into
the input buffer in cycle 2. The non-deterministic scheduling
of filter groups at runtime prevents pre-generating the signals
that drive the selection multiplexers shown in Figure [7] (b).
DNNSHIELD instead uses a "MUX signal logic” unit that
uses the bit mask of active weights produced by DNNSHIELD
scheduler to dynamically generate the control signals.

V. DYNAMIC NOISE AND ADVERSARIAL DETECTION

A. Impact of Noise Rate on Classification Output

In order to understand the impact of model approximation
on classification output, we use the L;-norm metric to measure
the difference between noisy and non-noisy outputs for the
same inputs. The Li-norm (also known as Manhattan Dis-
tance) is the sum of the absolute pair-wise differences between
elements of two vectors. We refer to this difference as the
Classification Probability Deviation under Noise (CPDN).

For this analysis we randomly select 1000 benign images
from ImageNet. We further generate a total of 1000 adversarial
images using 10 different attacks (or attack variants). We run
each input 8 times with different noise distributions to generate
8000 sample points for benign as well as adversarial inputs.
We measure the CPDN for each input. Figure [§] shows a 3D
representation of CPDN for varying classification confidence
levels and average noise rates, for benign (a) and adversarial
samples (b). Figure [§] shows that across the entire sample
space of 8000 data points, CPDN is consistently higher for
adversarials compared to benigns, confirming lower robustness
to noise for adversarials.

The data also shows that benign inputs, while more robust
to noise than adversarials, are sensitive to high levels of noise
if their classification confidence is low. This can be observed
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in Figure [§] (a) from the high CPDN at high noise and low Z-
score. This suggests that low-confidence benign inputs should
receive lower noise. Figure |§| (b) shows that low-confidence
adversarials exhibit relatively high CPDN even at low noise
levels. If we turn our attention to high confidence adversarial
samples, we see that they require higher noise levels to exhibit
high CPDN. The same high levels of noise, however, when
applied to high confidence benigns exhibit a much lower
CPDN, indicating that they are robust to high noise. This
data suggests that correlating the noise to the confidence of
the classification is important to using CPDN in adversarial
detection.

Figure [9] shows the CPDN distributions for benign and
adversarial images when noise is correlated to the confidence
of the non-noisy classification — higher noise for higher
confidence. Figure [9] shows a clear separation between the
CPDN distributions of adversarial and benign images, across
the entire range of classification confidence that our attacks can
generate. As expected, adversarial inputs exhibit higher CPDN
deviation from non-noisy baseline compared to benign inputs.
DNNSHIELD uses this separation with appropriate thresholds
to detect adversarial inputs.

B. Robustness Analysis

In order to understand why it is important to correlate ap-
proximation noise to classification confidence, let us consider
a model that classifies input X in the most probable class Cy
with probability P, and the runner-up class C» with probability
P5. Cohen et al. [8] showed that the distance between P; and
P, has a direct correlation to the amount of the noise around
X that can be tolerated by the classifier.

The Lo radius R around X can be calculated by:

R=2(@'(P) - o (D))

2
where ®~! is the inverse of standard Gaussian CDF and o is
the standard deviation of the noise. The higher the R value
for an input X, the more noise the classifier can tolerate and
still classify X correctly. According to Equation [3] the radius
R is large when the probability of top class 'y is high and
the probability of the next class is low, which corresponds to
high confidence classification. This shows robustness to noise
is correlated to classification confidence. We therefore expect
that benign images will not suffer from high false positive rate
regardless of confidence, if the approximation noise is scaled
with the confidence.

3

C. Adversarial Detection

The DNNSHIELD framework relies on the CPDN metric to
detect adversarial inputs. This process is depicted in Figure
Initially, a first inference pass through the network is
performed without noise injection to establish a reference.
The output classification is recorded as PP. This is followed
by another approximate inference pass. The confidence of the
classification P’ is used to determine the amount of noise to
be injected.
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Fig. 10. Adversarial detection using CPDN (L7 distance).

The L, distance between the output vectors of the noisy
(PN) and non-noisy (P?) inference passes is computed. The
L, distance is then compared with different thresholds values.
Depending on the outcome, subsequent inference passes may
be required. Figure [9] shows the 4 thresholds used by the
detection mechanism overlaid on the L, distance distribution
for VGG16. t1 and t, represent the L distance below/above
which most benign/adversarial images fall, respectively. ¢} and
tl, represent tighter thresholds below/above which about 80%
of the benign/adversarial images fall.

If the measured L; distance is either very high or very
low (< #) or > t}) the input image can immediately, and
with high confidence, be classified as benign or adversarial,
respectively. Most inputs (>= 80%) from both our benign
and adversarial test sets fall in this category. In this case the
detection algorithm terminates and the outcome is reported.

Otherwise, DNNSHIELD cannot yet make a high-
confidence detection, and another noisy inference pass is
required. The average L, distance over all the previous noisy
runs is computed and compared with the more conservative
thresholds ¢; and ¢5. The images with average L, < t; are
classified as benign and those with average L; > iy are
classified as adversarial. If {; < L; < t2, a new noisy pass
is performed and the average L, distance is recomputed. The
algorithm repeats until a maximum M number of iterations
is reached (M = 4 and M = 8 in our experiments). If a
classification is still not possible, the algorithm defaults to
Benign.

VI. DNNSHIELD PROTOTYPE IMPLEMENTATION

As a proof-of-concept, we implement DNNSHIELD in a
FPGA-based DNN accelerator, the Xilinx CHaiDNN archi-
tecture [39]. Figure [IT] shows a diagram of the design. The
baseline includes dedicated hardware for Convolution Pooling,
and Deconvolution functions. All the compute elements are
connected to a Memory Interface Block which allows access
to the on-chip SRAM as well as the main system DRAM via
a custom AXI Interconnect. DNNSHIELD augments the base-
line accelerator with the following components color coded
blue: (1) modified convolution supporting noisy sparsification
including MUX select generator logic, input window buffers
and priority encoders, (2) custom logic for computing CPDN,
and (3) additional control logic for coordinating partial result
reuse and early termination.
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Fig. 11. DNNSHIELD hardware design based on the Xilinx CHaiDNN
accelerator.
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Fig. 12.  DNNSHIELD Runtime integrated with CHaiDNN software.

Convolution is the core of noisy sparsification with MUXes
distributed through PEs for and MUX signal generators. PEs
within the column share MUX signals. Also, priority encoders
are used to determine the number of inputs that need to be
bypassed regarding the ignored weights in sparsification. Then
the address offset is calculated and the next set of inputs will
be loaded in the input buffer.

CPDN Unit is used to compute the CPDN between a noisy
and non-noisy output. It primarily consists of logic to subtract
vector elements and accumulate the absolute value of the
result, shown in Figure E

DNNShield Runtime: The CHaiDNN/DNNSHIELD software
stack as shown in Figure [T2} includes of a parser for the input
model and a pre-processor for the DNN inputs. DNNSHIELD
profiler is added to the ChaiDNN parser to create the thresh-



old array that later will be used by DNNSHIELD. The
DNNSHIELD Runtime is invoked by the pre-processor fol-
lowing the initial non-noisy run to determine the noise level
to be injected. The DNNSHIELD handler is designed to invoke
the scheduler when the CPDN needs to be computed in the
hardware. It also augments the scheduler with DNNSHIELD
scheduler for grouping the balanced filter together for more
efficient execution.

VII. METHODOLOGY

We implement, synthesize and deploy DNNSHIELD on
CHaiDNN running on a Xilinx Zynq UltraScale+ FPGA. The
SoC associated with the board is ZU7EV which integrates a
quad-core Arm Cortex-A53 processor. CHaiDNN is an open-
source Deep Neural Network accelerator designed to run on
Xilinx Ultrascale MPSoCs. We compare our FPGA accelerator
with two software implementation of DNNSHIELD on a CPU
and GPU. We implemented the software DNNSHIELD using
TensorFlow2 [1]. We run our software DNNSHIELD on Intel
Core-i7 CPU@3.40GHz and NVIDIA RTX-2060 Turing GPU.

A. DNN Models, Input Dataset, Attacks

We used two networks VGG16 [52] and ResNet50 [20]
trained on ImageNet [28] for running attacks and generating
adversarial images. Targeted attacks, which aim to misclassify
an input into a target class, use two types of targets called
Next and LL. Next corresponds to choosing the target class
t = L + 1 mod #classes where L is the sorted index
of top ground truth classes. For LL the target class t is
chosen as least likely class (¢ = min(y)) where § is the
prediction vector of an input image. Table [I] summarizes the
adversarial attacks alongside their detailed parameters, success
rate, average confidence and average distortion with different
metrics per model.

B. Comparison with Existing Defenses

We compared our detection rate of adversarial as well as
True/False Positive rate (TPR/FPR) of benign images with
two state-of-the-art post-training defense mechanisms, detailed
below. Stochastic Activation Pruning (SAP) [12] introduces
randomness into the evaluation of a neural network to de-
fend against adversarial examples. SAP randomly drops some
neurons of each layer to O with a probability proportional
to their absolute value. Values which are retained are scaled
up to retain accuracy. Feature squeezing (FS) [60], [31]]
is a correction-detection mechanism that relies on reducing
the input space (and attack surface) by “squeezing” images.
FS requires off-line profiling and training to find the best
squeezer and corresponding thresholds for each pair of data-
set and attack, making it less practical to deploy in real-world
applications. FS also requires at least 3 squeezers, resulting
in at least 4x performance overhead. For a fair comparison
we retrained FS on our set of benign and Adversarial im-
ages for both VGG16 and ResNet50 separately. Approximate
mul8u_KEM: We also compared with an approximate multi-
plier (Approx. mul8u_KEM) from [39], in an approach similar
to [19].

VIII. EVALUATION

We evaluate DNNSHIELD adversarial detection rate, ro-
bustness to defense-aware attacks, and performance and area
overheads. We also conduct a number of sensitivity studies for
the main design parameters.

A. Adversarial Detection

We first look at DNNSHIELD’s ability to identify adversar-
ial images. We measure the detection rate for adversarial inputs
as well as the false positive rate (FPR) for benign inputs. We
compare DNNSHIELD with Feature Squeezing (FS) and SAP
for multiple configurations of CW and EAD. Table [[ lists the
detection rate for all the attack variants we evaluate, for both
VGG and ResNet.

The results show that both DNNSHIELD significantly out-
performs both FS and SAP on average. DNNSHIELD shows an
average detection rate of 86% and 88% for VGG and ResNet,
respectively. DNNSHIELD also significantly outperforms the
state of the art defense, FS which averages 55% and 79%
for VGG and ResNet, respectively. This is especially true for
high-confidence attack variants, for which FS does not work
as well. For instance, under the FADy; attack with &k = 70
we see 93% detection rate for DNNSHIELD vs. 4% for FS
(VGG16). This shows that DNNSHIELD is resilient to very
strong attacks.

Figure shows detection rate versus adversarial confi-
dence for DNNSHIELD, FS and the Approx. mul8u_KEM
as a function of classification confidence. Both FS and Ap-
prox. mulS8u_KEM detection rates fall steeply as confidence
increases while DNNSHIELD detection rate remains high.
These results re-emphasize the importance of adapting the
approximation error to the confidence of the classification.

B. DNNShield-Aware Attacks

In order to investigate the robustness of the DNNSHIELD
defense, we construct a set of attacks tailored specifically
to defeat it. These attacks assume full knowledge of the
DNNSHIELD design. In theory, DNNSHIELD could be de-
feated by an attack that generates adversarial examples for
which the model’s robustness to approximate inference is
similar to that of benign examples. In order to attempt to
generate such adversarial examples, we used the approach
suggested in [55] to generate adversarial examples that target
the probability vector of an arbitrary benign example from
another class. The idea is to create an adversarial example that
mimics the response of benign images under noise. Hence,
for sample = of class y, we pick a target ¢ # y and create
adversarial example x’ that minimizes the objective:

minimize |ly(x’) — y(z¢)||1 4)
where y(z') and y(z;) are the probability vector of the
adversarial and target inputs respectively. While we try to
minimize the L; distance between adversarial and the benign



TABLE I
ATTACK PARAMETERS FOR MULTIPLE VARIANTS OF CW AND EAD ATTACKS. ORIGINAL ATTACK SUCCESS RATE, CONFIDENCE, AND DISTORTION.
DETECTION RATES FOR 4 DEFENSES: SAP, FS, APPROXIMATE-MUL AND DNNSHIELD. DATASET FROM IMAGENET.

Attacks Defenses
Distortion " + Approximate .
Attack Target Param k Mean Confidence LO LQ Loo SAP FS mulsu_KEM DNNSHIELD
VGG RNet | VGG RNet | VGG RNet | VGG RNet | VGG RNet | VGG RNet [ VGG RNet | VGG RNet | VGG RNet | VGG RNet
o Next |5 5 020%  045% | 422% 420% | 232 105 | 1044 626 | 094 088 [ 35% 2% | 100% 100% | 33% 9% | 6%  82%
CWio LL 848%  87.9% | 424% 42.1% | 382 185 | 1365 833 | 096 092 || 29%  43% | 100%  100% | 56% 96% | 100%  100%
Next | 10 30 | 1000% 100.0% | 100.0% 100.0% | 412 411 | 1.60 163 | 007 006 | 5% 4% | 8%  89% | 68% 11% | 91% 100%
ow LL 1000% 100.0% | 100.0% 100.0% | 555 531 | 224 207 | 008 006 | 36%  46% | 100% 100% | 81% 28% | 100%  100%
L P NextT| 70 140 | 100.0% 100.0% | 99.9%  100.0% | 2015 2609 | 743 922 | 024 02 | 0% = 21% | 6% 48% | 7% 0% | 84%  89%
LL 100.0% 100.0% | 99.9%  100.0% | 2176 3267 | 807 1156 | 025 024 || 0% 17% | 9% 61% | 19% 0% | 96%  98%
ow Next |5 5 947%  953% | 1000% 100.0% | 735 523 | 227 16 | 001 001 | 2% 4% | 9% 9% | 69% 71% | 83%  89%
Loo LL 91.8%  934% | 99.9%  100.0% | 1,023 699 | 305 212 | 001 001 || 45%  45% | 100%  100% | 94% 98% | 100%  100%
Next | 10 30 | 1000% 100.0% | 524%  583% | 173 205 | 260 279 | 024 022 | 21% 2% | 78%  98% | 41% 2% | 91%  98%
EAD LL 1000% 1000% | 547%  594% | 269 276 | 356 347 | 029 026 | 34%  41% | 100% 98% | 59% 0% | 100%  100%
L1 FNextT| 70 140 | 1000% 100.0% | 78.8%  80.5% | 1400 1734 | 992 1234 | 0.54 049 | 0% 16% | 4% 46% | 2% 0% |78%  88%
LL 1000% 100.0% | 783%  85.5% | 1,510 2,782 | 1065 17.36 | 055 058 || 0% 18% | 4% 81% | 4% 0% | 93%  84%
2AD Next | 10 30 | 1000% 1000% | 479% 524% | 191 421 | 436 673 |06 073 | 17% 40% | 6%  89% | 21% 0% | 80% 94%
BN L 1000% 100.0% | 48.0% 574% |22 596 |59 859 | 072 08 | 12% 26% | 98%  98% |36% 2% | 9% = 97%
RNet: ResNet50, VGG: VGGI6 FFS threshold: VGG16: 1.022, ResNet50: 1.229, AVG || 166% 332% | 55%  79% | 36% 15% | 86%  88%
*Values for SAP are accuracy FPR || 58% 37% 6% 3% 29%  19% | 6% 6%
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target, we need to also minimize the adversarial perturbation
under the Ly distortion metric. The final objective function is:

minimizes  cf (z,t) + Blly(x") — y(e)ll + [lo — woll3
such that x € [0,1]"
®)

where f(x,t) denotes the loss function and 3 is the regulariza-
tion parameter for L; penalty. Increasing 3 forces a lower L;
distance between the adversarial and target benign and could
evade DNNSHIELD detection.

Table [[] summarizes the adaptive attack parameters and
detection rates under DNNSHIELD. We can see that for low-/3
attacks, DNNSHIELD detection rate is very high (A;-Aj3). For
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4-5x relative to Az. To understand why, Figure [T4] shows the
effect of 5 on the L; distance of probability distribution and
L, distortion. Optimizing for both low L, distortion and L4
distance are competing objectives. Increasing /5 will decrease
the L, distance, making the adversarial harder to detect, but it
also increases Ly distortion. The target benign input, which the
adversarial sample is trying to mimic, is chosen randomly from
1000 images in the adversarial targeted class. While a few of
these targets do lead to lower distortion, the average distortion,
for high B (10~1), is very high. Another popular approach
is using an EoT attack in which noise (transformation) was
applied during adversarial generation. We injected variable
noise correlated to the confidence of the classification in
each training iteration, as in DNNShield. The result was that,
because of the variable noise, the attack could not converge
on a successful adversarial. Using fixed noise as in traditional



EoT did not work either because of the adaptive DNNShield
response.

TABLE II
DNNSHIELD AWARE ADAPTIVE ATTACKS

8 Success rate ‘ Mean Confidence Lo Distortion DNNSHIELD det.
Attack VGG RNet | VGG RNet VGG RNet | VGG RNet
Ay 1077 ] 100% 100% | 943%  95.9% 3.91 2.71 99% 100%
A 1073 | 100% 100% | 92.3% 94.0% 2.48 1.42 99% 100%
A3z 1072 | 100% 100% | 96.1%  96.9% 10.14 845 95% 84%
Ay 101 | 58% 31% 97.7%  97.9% 41.58  46.99 | 81% 39%
B=10"% B=10"3 B=10"2 B=10""!
o e o

Fig. 15.

Adversarials generated by DNNSHIELD-aware attacks.

Figure [T3] shows two examples of adversarial inputs gener-
ated with different 3 values. We can see that distortion artifacts
are clearly visible for 3 = 1071, and can be detected through
other means.

At high f3 values, the attack is also less likely to succeed. For
B =10"", only 58% (VGG) and 31% (ResNet) of examples
can be converted into adversarials that defeat the unprotected
baseline. DNNSHIELD is still able to detect 81% and 39% of
the VGG and ResNet ones, respectively.

This shows that DNNSHIELD is robust to defense-aware
attacks that optimize for low L, distance.

C. Performance, Area and Power Overheads

We next examine the performance, area and overheads of
the DNNSHIELD framework. Figure [I6] shows the average
normalized run time of DNNSHIELD on the GPU, CPU and
DNNSHIELD accelerator. The runtime overhead of software
DNNSHIELD on GPU is 15 x to 25X higher than the baseline.
This high overhead is primarily due to the random number
generation function used by the dynamic sparsification algo-
rithm — which does not appear to be optimized on the GPU
— and is called when sparsifying each filter. This overhead
is highlighted by the "DNNSHIELD overhead”, shown as a
pattern in Figure [T6

In contrast, the overhead of the DNNSHIELD accelerator
implementation is much lower at 1.53x and 2x for ResNet50
and VGG16, respectively. Unlike the GPU, the DNNSHIELD
accelerator performance overhead is primarily due to re-
execution of the approximate inference. While not trivial, the
DNNSHIELD performance overhead compares favorably with
that of FS which exceeds 4x. For software-DNNSHIELD on
the CPU the overhead ranges from 2.43x to 4.47x which
is again, higher that for DNNSHIELD. In addition, the total
runtime of the models on the CPU is dramatically longer
than the FPGA. Very slow runtime of convolutional and FC
layers on CPU dominate execution time. Hardware support
for dynamic sparsification reduces overhead by 15% and 30%
relative to the DNNSHIELD without sparsification support.

11

------ FS B DNNShield overhead
Bl Baseline DNNShield w/o dynamic
B DNNShield sparsification support
. P
R
© Q
E<
5 o
>
£
(a1
ResNet50
(a) GPU software DNNShield
[}
23 4 1.5865
© Q
€L 2
g9 1.919s
) o
VGG16 ResNet50
(b) CPU software DNNShield
©
ge 0-5285 4545 0.206s
502
t3
(O]
a

o

VGG16
(c) DNNShield accelerator

ResNet50

Fig. 16.  DNNSHIELD runtime on (a) GPU, (b) CPU and (c) DNNSHIELD
accelerator for VGG16 and ResNet50.

Table [Tl summarizes the area and power overhead of
the combined DNNSHIELD hardware relative to the baseline
CHaiDNN accelerator. We can see that the total overhead is
low, with FPGA resource utilization increasing by at most
2.56%. Power overhead is higher, but still small at 4.5%
dynamic.

TABLE III
FPGA RESOURCES AND POWER OVERHEAD OF DNNSHIELD OVER
BASELINE CHAIDNN ACCELERATOR.

Resource | Baseline | DNNSHIELD | Overhead%
BRAM 202.5 204 0.75%
DSp 696 696 0.0
FF 112501 113630 1.1%
LUT 158060 159381 0.8%
URAM 80 80 0.00
BUFG 3 3 0.00
PLL 1 1 0.00
Power Baseline | DNNSHIELD | Overhead%
Static 0.721W 0.726 0.6
Dynamic | 5.567W 5.822W 4.5

D. Sensitivity Studies

The DNNSHIELD design spans a broad design space that
affects performance overhead for adversarial detection accu-
racy.

1) Sparsification Approaches: We evaluate multiple ap-
proaches for dynamic sparsification. The naive approach of
randomly dropping any weight subject to the sparsification rate
(SR) results in, as Figure shows, a very high (> 90%) false
positive rate (FPR) for benign inputs, indicating that random
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Fig. 17. Adversarial detection and benign FPR with different sparsification
approaches.

weight sparsification results cannot be used to discriminate
adversarial inputs. This is because random sparsification can
result in the dropping of large weight values, with large impact
on classification output. To address this issue, in DNNSHIELD
we drop a random number of weights between 0 and SR from
each filter, in ascending order of their values. This results
in high adversarial detection, with low benign FPR. This is
mostly due to the fact that dropping weights in ascending order
enables more precise control over the approximation error. We
also show that adapting the SR to classification confidence
is very important. The High SR and Low SR experiments in
Figure [I7] show the effects of weight dropping at fixed rates of
up to 80% and 20% respectively. The Low SR is insufficient
to achieve adversarial detection, while fixed 80% results in
very high benign FPR.

2) Detection Convergence: Figure [I§] shows the attack
success rate as a function of the number of runs with inference
approximation. More runs should ensure higher detection
accuracy by generating more samples for the L; distance aver-
age. We can see that the attack success rate drops rapidly after
1-2 noisy runs, and remains mostly constant after that. This
translates in DNNSHIELD converging rapidly on a detection
decision. A single noisy run is sufficient for >80% of the
benign inputs, and less than 10% require more than 2.

3) Detection Thresholds: Finally, we performed a sensitiv-
ity analysis on the threshold parameters used for adversarial
detection. To study the effect of detection thresholds, we
varied ¢} in the [0.05,¢1] range in 0.1 increments. Then, for

12

—— Benign TPR —e— Adversarial success rate

VGG16
100
801
60
40
base 1 2 3 4 5 6 71 8
inference.

Number of noisy runs

(a)

ResNet50
100 " o~ "
801
60
40
20
base 1 2 3 4 5 6 7 8
inference.

Number of noisy runs
(b)

Fig. 18. Adversarial attack success rate for multiple attacks as a function of
the number of noisy runs in DNNSHIELD.

each value of ¢} we varied t; in the [t2,1.95] range and
computed the average false positive rate (FPR). Figure [I9]
shows the average FPR for benign and adversarial inputs for
different values of t{. ResNet50 exhibits a tighter distribution
for L, distance under approximation and is therefore not
sensitive to the threshold values. VGG16 on the other hand
is more sensitive due to its wider distribution The threshold
value allows a small tradeoff between FPRs for benigns vs.
adversarials.

IX. RELATED WORK

Several other methods for designing robust neural networks
to adversarial attacks have been proposed in the literature.
These methods typically fall into four broad categories [2]:
Hardening the model, also known as adversarial training.
Recent works certified robust models by training models under
Gaussian noise injection into the inputs [§]] or the model [21],
[30]. While these methods represent a systematic solution to
adversarial attacks, they are limited to certain perturbation
norms (e.g Lo) and do not scale for large datasets like
ImageNet. Unlike model and input hardening approaches,
DNNSHIELD does not require any re-training of the model
and sacrifices little in model accuracy. DNNSHIELD is de-
signed to defect adversarial examples post-training, during
model inference.

Hardening the test inputs, also known as applying input
transformations, such as filtering or encoding the image. Input
hardening methods require profiling to select appropriate pa-
rameters, such as Feature Squeezing [60] and Path Extraction
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[46], [16]. Xie et al. [58] propose to defend against adversarial
examples by adding a randomization layer before the input
to the classifier. [16] showed that adversarial inputs tend to
activate distinctive paths on neurons from those of benign
inputs. They proposed hardware accelerated adversarial sample
detection, which uses canary paths from offline profiling. In
contrast, DNNSHIELD does not require profiling.

Adding a secondary, external network solely responsible for
adversarial detection and with a separate training phase, such
as NIC [33]]. DNNGuard [57] proposed an accelerator for such
detection mechanism but has not evaluated a specific detection
classifier. Secondary network detection-based methods are not
as effective, and can be evaded by adaptive attacks [3].
Noise-based approaches Prior work has similarly explored
ways of discriminating adversarial inputs using noise. How-
ever, prior approaches have either proposed injecting noise
into the input [8], [3] — with lower detection rate — or into
the model during training [47], [21], [30], [48]. However,
the challenge with training-based approaches such as [21]
is that the noise parameters tend to converge to zero as
training progresses, making the noise injection progressively
less effective over time [26]. While training-based approaches
have enabled “certified robust” inputs, that certification is
generally limited to a very narrow set of inputs.

X. CONCLUSION

In conclusion, this paper showed that dynamic and random
sparsification of DNN models enables robust > 88% adversar-
ial detection across multiple strong attacks, for different image
classifiers. We also demonstrated the importance of correlating
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approximation error to attack confidence, and showed robust-
ness against defense-aware attacks.
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