
StVEC: A Vector Instruction Extension for High Performance Stencil Computation

Naser Sedaghati, Renji Thomas, Louis-Noël Pouchet, Radu Teodorescu, P. Sadayappan
Department of Computer Science and Engineering

The Ohio State University
{sedaghat,thomasr,teodores,pouchet,saday}@cse.ohio-state.edu

Abstract—Stencil computations comprise the compute-
intensive core of many scientific applications. The data access
pattern of stencil computations often requires several adjacent
data elements of arrays to be accessed in innermost parallel
loops. Although such loops are vectorized by current compilers
like GCC and ICC that target short-vector SIMD instruction
sets, a number of redundant loads or additional intra-register
data shuffle operations are required, reducing the achievable
performance. Thus, even when all arrays are cache resident,
the peak performance achieved with stencil computations is
considerably lower than machine peak.

In this paper, we present a hardware-based solution for this
problem. We propose an extension to the standard addressing
mode of vector floating-point instructions in ISAs such as
SSE, AVX, VMX etc. We propose an extended mode of
paired-register addressing and its hardware implementation,
to overcome the performance limitation of current short-vector
SIMD ISA’s for stencil computations. Further, we present a
code generation approach that can be used by a vectorizing
compiler for processors with such an instructions set. Using an
optimistic as well as a pessimistic emulation of the proposed
instruction extension, we demonstrate the effectiveness of the
proposed approach on top of SSE and AVX capable processors.
We also synthesize parts of the proposed design using a 45nm
CMOS library and show minimal impact on processor cycle
time.

I. INTRODUCTION

Stencil computations arise in the core kernels of many
scientific applications and their optimization has been the
focus of several recent publications [1], [2], [3], [4], [5], [6].
Stencil codes are generally easily vectorized by compilers
such as GCC and Intel’s ICC because they typically feature
parallel innermost loops where array elements are accessed
at unit stride. However, as we illustrate using a simple
example below, the realized performance often falls far
short of machine peak, even when all accessed data is
resident in the L1 cache. The main reason for the loss of
performance is that when compiling stencil codes for current
vector instruction architectures, it is necessity to use either
redundant and unaligned load operations or intra-register
shuffle or other intra-register data reorganizing operations.
In this paper we propose a hardware based solution along
with a compiler code generation approach to address the
problem.
Consider the following loops S1, S2, and S3 (shown in

Figure 1). The first loop S1 multiplies a scalar element K
with each element of vector B, and add the result to an

element of vector A with the same index, in order to produce
vector result A. Assuming that the hardware vector size is 4
(as in SSE for float data), and that A[0] and B[0] are aligned
to a boundary that is a multiple of the hardware vector size,
the vector code generated by a compiler for S1, in every
iteration of the outer loop t, will use N

4
− 1 aligned vector

load and store operations to read/write the elements of B and
A — compute A[4*i:4] by loading B[4*i:4] (the notation
A[i:V] denotes a vector of V consecutive elements of A
starting at index i) and multiplying with a vector register
containing four identical copies of the scalar K.

for (t = 0; t < T; t++)
for (i = 4; i < N; i++)

S1 : A[i] += B[i] * K;

for (t = 0; t < T; t++)
for (i = 4; i < N; i++)

S2 : A[i] += B[i-1] * K;

for (t = 0; t < T; t++)
for (i = 4; i < N; i++)

S3 : A[i] += B[i-1] * B[i];

Figure 1. Vector multiply-add loop with different multiply operands:
aligned-constant (S1), unaligned-constant (S2), unaligned-aligned (S3).

Code Nehalem Sandy Bridge Core2 Quad Phenom
(i7-920) (i7-2600K) (Q6600) (9850BE)

S1 4.10 11.36 3.70 3.84
S2 3.75 7.80 0.87 2.71
S3 2.83 6.51 0.83 2.27

Table I
PERFORMANCE (GFLOPS) FOR S1, S2 AND S3 ON DIFFERENT

MACHINES FOR N=1024 AND T=500000.

With loop S2, the number of vector multiplication op-
erations and the number of vector load/store operations is
the same as for S1, but either A or B will require unaligned
load/store operations. With loop S3, in addition to unaligned
loads, redundant loads or intra-register data movement oper-
ations will be required since an overlapping and unaligned
vector is involved in the multiplication of B[4*i-1:4] and
B[4*i:4]. Table I shows the performance of S1, S2, and
S3 on four different processors (the details of the hardware
platforms are provided later in Section.IV). It may be seen
that on all platforms, the performance of S2 is worse than
S1 and S3 is worse than S2. All three statements execute
the same number of vector arithmetic operations and process

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.59

275

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.59

276

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

the same number of distinct data elements. The difference in
performance is due to the overheads incurred by one or more
of the following: i) redundant load of data elements into
different "slots" in different vector registers, ii) unaligned
loads instead of aligned loads, and iii) shuffle or alignment
operations to move data elements into a different position in
a vector register. With all current and proposed short-vector
SIMD instruction set architectures, stencil computations will
incur overheads similar to that of S3, limiting achievable
performance.
In this paper, we propose an architectural solution with

compiler support to address the problem. The key idea is to
enhance the addressing modes for vector operands in vector
arithmetic instructions, by allowing elements from a pair
of registers to form one of the operands. We present an
architectural design and its simulation to assess the over-
heads. We also present a compiler algorithm for generating
intrinsics-based code for the extended architecture. Using a
number of stencil benchmarks, we experimentally evaluate
the effectiveness of the approach by using an optimistic and
pessimistic emulation of the approach on four platforms. To
the best of our knowledge this is the first hardware-based
solution along with compiler support to address the perfor-
mance limitations of current short-vector SIMD architectures
for stencil computations. We note that in the following, we
assume complementary loop transformations such as loop
tiling [7] have been performed to control data cache misses,
ensuring the loop nest to be considered accesses data that
fits into the L1 cache. The selection and application of such
transformations is orthogonal to the work presented here.
The paper is organized as follows. Section. II presents

the instruction set enhancement and the hardware imple-
mentation of a register file to enable the new addressing
modes. Section. III develops the code generation algorithm
through a sequence of examples of increasing complexity
and performance. The approach to experimental evaluation
is discussed in Section. IV and Section. V reports on the
experimental evaluation of the proposed approach. Related
work is discussed in Section. VI and conclusions are pro-
vided in Section.VII.

II. VECTOR ISA ENHANCEMENT VIA STVEC

Stencil computation typically involves access to adjacent
array elements. As a result, vectorized stencil code often uses
operands that span multiple vector registers. Aligning vector
instruction operands requires additional loads and/or shuffle
operations even though the needed operands are already in
the register file (albeit unaligned). StVEC proposes changes
to how operands are addressed and read from the physical
vector register file to allow automatic alignment of operands
when needed. This eliminates the need for additional align-
ment instructions, significantly improving performance of
stencil code.

A. StVEC Functionality: An Example

Considering the stencil example in Figure 1(S3), we
demonstrate how such a vectorizable loop executes on a 4-
wide vector unit (total 128-bit wide vector operands). For
this purpose, we show two different versions of the S3 code
generated and vectorized by Intel ICC compiler for two
different x86-based machines. By having a closer look at
the inefficiencies in execution for the generated codes, we
then demonstrate how StVEC allows efficient vector code
generation and execution. Note that, only for demonstration
purposes, we use Intel’s SSE instruction notations (i.e. xmm
register names, SSE ISA, etc).
In order to vectorize the loop nest in Figure 1(S3), at every

iteration of the innermost loop i, the vector multiplication
(B[i − 1] ∗ B[i]) requires two operands whose memory
alignments are different. Using stride 4 for vectorizing the
loop, and since the index starts at 4, first vector operand
(B[i− 1]) is an unaligned access (i.e. vector load) to mem-
ory while the second operand (B[i]) is aligned. Based on
the cost estimation for underlying architectures, vectorizing
compilers (e.g. Intel ICC) tend to generate different vector
instructions in order to deal with such overlapping memory
accesses. The following subsections describe in details the
two possible existing compiler solutions along with snapshot
of the vector register file (VRF) after executing each code.
We also show how StVEC can help overcoming the bottle-
neck in stencil computation’s performance. We assess code
efficiency of the different approaches in terms of number
of overhead instructions (i.e. unnecessary/redundant vector
load, register alignment, register copy, etc) generated per
stencil computation (multiplication, in this case).

Extra vector load with alignment: One way to generate
code for building an unaligned operand is to load two con-
secutive vector slots from memory and combine them using
data manipulation instructions (i.e. shuffle or palignr).
This case (shown in Figure 2(a) as generated code for Intel
Core2 Quad and the VRF snapshot) is cost-efficient for
architectures where unaligned loads are either expensive or
not supported. As generated assembly code shows, palignr
uses xmm1 (that holds a copy of B[i]) and another vector
slot xmm14 (which arbitrarily selected by compiler to hold
B[i − 4]) in order to generate the unaligned multiplication
operand, B[i− 1]. Note that this approach requires registers
to hold copies due to limitation in a destructive instruction
format where first source operand and destination must be
the same. In terms of code efficiency, this solution requires
four overhead operations (two loads, one copy and one
shuffle) for every single vector multiplication.

Unaligned vector load: For architectures where un-
aligned loads are successfully implemented with lower costs
(i.e. Intel Nehalem), vectorizing compilers generate the code
as shown in Figure 2(b). Neither multiplication operands
requires extra permutations in this case. We only need two

276277

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

LOOP:
1 movaps 16+B(...),%xmm2
2 movaps %xmm2,%xmm1
3 palignr $12,B(...),%xmm1
4 mulps %xmm2,%xmm1
5 addps 16+A(...),%xmm1
6 movaps %xmm1,16+A(...)
7 addq $4,%rdx
8 cmpq $1020,%rdx
9 jb LOOP

LOOP:
1 movups 12+B(...),%xmm1
2 mulps 16+B(...),%xmm1
3 addps 16+A(...),%xmm1
4 movaps %xmm1,16+A(...)
5 addq $4,%rdx
6 cmpq $1020,%rdx
7 jb LOOP

LOOP:
1 movaps 16+B(...),%xmm2
2 stmulps $3,%xmm1,%xmm2,%xmm2
3 addps 16+A(...),%xmm2
4 movaps %xmm2,16+A(...)
5 ; circulate the buffer(s)
6 addq $4,%rdx
7 cmpq $1020,%rdx
8 jb LOOP

(a) (b) (c)

Figure 2. Illustrtion of VRF use and assembly code for code from Figure. 1 (S3): (a) Using extra vector load and alignment instructions, (b) Using
unaligned vector loads and (c) using StVEC.

registers (xmm1 and xmm15) to hold unaligned B[i − 1]
and aligned B[i] operands, respectively. However, for vector
ISAs where unaligned vector load is not supported (i.e. in
IBM Power), this approach is not practical. In terms of code
efficiency, this solution executes two unaligned loads for
every vector multiplication.
We use the VRF snapshot for the two solutions to describe

their execution inefficiency. We show execution of the only
vector multiplication (B[i−1]∗B[i]) using labeled elements
for simplicity. For the solution in Figure 2(a) with extra
vector load, in order to build the aligned operand (45 degrees
hatching), all the elements (e, f , g, and h) need to be stored
in one register (xmm2). However, the unaligned operand
(90 degrees hatching) requires four elements that are spread
across two different vector registers (d in xmm15 and e,
f , and g in xmm1). Moreover, this operand leaves four
already-loaded elements untouched (a, b, c, and h). Thus,
the first solution suffers from unnecessary memory accesses,
register copy and also the necessity for alignment instruc-
tions. Second approach (Unaligned vector load), however,
suffers from redundant memory accesses due to overlap
between the two vector operands (elements e, f , and g that
are loaded into both vector registers xmm1 and xmm15).
This cost is in addition to the necessity for architectures to
support unaligned memory access.

StVEC (no shuffle and no unaligned load): As shown
in Figure 2(c), using StVEC, one can load vectors one by
one using aligned vector loads. Then, by a simple hardware
support in the VRF, vector elements can be read from
two different vector registers (i.e. to build the unaligned

operand, B[i − 1]). This solves the overlapping vectors
because elements are loaded once but can be (re)used many
times. As a result, there are elements in the VRF (crossed
45 degrees hatching representing e, f , and g) that need
to be read for more than one vector operands, but don’t
need to be loaded more than once, due to the StVEC ISA
support. Therefore, StVEC eliminates the need for register
alignment (using the VRF augmentation to implement in-
place implicit alignment) and also the need for unaligned
memory access. In fact, as shown in Section III, using some
code optimization techniques (i.e. using software pipelining
to eliminate register copy in the buffer circulation process),
StVEC can improve the stencil computation performance by
only executing one aligned vector load per stencil computa-
tion. Providing more details, the following is how StVEC’s
execution model works in practice.

B. StVEC Execution Model

As discussed briefly, StVEC introduces a set of new arith-
metic instructions, that can handle unaligned operands with-
out introducing execution of some overhead instructions. For
hardware simplicity, and also destructive instruction format
(first source operand is the destination as well), StVEC only
supports unalignment for the second source operand. To
build such an operand, in cases where it does not fit into
one vector register, the instruction requires three pieces of
information: a base register, an extension register, and an
offset value. The base register is used to locate the vector
register in which the first group of elements of the source
operand is stored. The extension, however, determines which

277278

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

vector register contains the second group of elements. The
offset value is used to identify where the first element of the
first group located in the base register. Thus, considering
the example in Figure 2(c), in order to build B[i − 1],
an adequate indexing information would contain register
specifiers 0x01 and 0x02 (for xmm1 and xmm2 as the base
and extension registers, respectively) and the offset value of
0x03. As discussed in Section. III, since vector elements in
the base register could be loaded in previous iteration(s) of
the vectorized loop, it is required to generate register-copy
instruction(s) to circulate these temporary buffers. However,
using other compiler optimizations (i.e. software pipelining),
we will remove the extra register copies. Note that, due
to the inherent stride-1 access pattern for stencils (that
are considered in this work), knowing one offset value is
sufficient to identify all the vector elements. Meaning, for
offset value of i, vector width of W , and the two given
source operands, we can find the elements in two groups:
first from [i:W − i] in base register and second from [0:i]
in the extension register. Also, in general, one can assume
that the two base and extension registers are distinct (and
not necessarily always consecutive registers such as xmm1
and xmm2 in Figure 2(c)).
From the functional perspective, for a second vector

operand named VOPR2, base and extension registers, VRx

and VRy , and different values of offset ofs, the second vector
operand will be found as shown in Figure 3.

(a) (b)

Figure 3. Operand encoding: (a) Two source vector registers, VRx (Xx

elements) and VRy (Yy elements), (b) Different permutations for second
vector operand, VOPR2, based on values of offset, ofs.

According to the Figure 3, if offset (i.e. ofs) is zero, then
second operand is the same as the base register, VRx . If
offset is one, the decoder will select the row associated to
VRx in banks 1, 2 and 3 and to V Ry in bank 0, and so on.
Therefore, other than offset value of zero, the first group of
elements is in VRx (starting at the position equals to the
offset value) and the second group is stored in VRy. Also,
number of elements in the first and second groups are (W -
ofs) and (ofs), respectively. Note that W refers to the vector
width.
As suggested earlier in this section, StVEC only requires

some changes to the "read-ports" of the vector register file.

StVEC Instruction Operation

stvadd k, VRx,VRy ,VRz VRz += VRx{k:W-k},VRy{0:k}
stvsub k, VRx,VRy ,VRz VRz -= VRx{k:W-k},VRy{0:k}
stvmul k, VRx,VRy ,VRz VRz *= VRx{k:W-k},VRy{0:k}
stvdiv k, VRx,VRy ,VRz VRz /= VRx{k:W-k},VRy{0:k}

Table II
STVEC INSTRUCTION FORMAT FOR BASIC SINGLE-PRECISION

FLOATING POINT VECTOR OPERATIONS (VECTOR OF SIZE W).

We stipulate a vector register file design that includes four
banks, with each bank containing a single word (32-bits) of
the multi-word register. Normally all four banks would be
accessed with the same address to access a single register.
StVEC changes this design to allow each bank to be accessed
with a different address. In addition, each bank can provide
an element associated to any position in the final output. To
support this, we add logic at the output of the register file
that shift the output of each bank to the required position in
the vector operation’s input operand. No changes to the write
port to the register file are needed since all the realignment
operations are done when reading from the register file.
For the rest of this paper, a generic notation (i.e. stvadd

for vector-add in StVEC format) and 128-bit wide vector
elements are considered as the reference cases to which the
StVEC extension will be introduced in details. However,
StVEC can be extended to support all the primitive vector
arithmetic instructions (i.e. addition, subtraction, multiplica-
tion and division) in the existing vector ISAs.

C. StVEC Instruction Format

There are three source operands as vector registers (VR)
and an additional 8-bit immediate value encoded in an
StVEC instruction. First operand is the imm8 value for
offset, k. Second and third places are taken by base and
extension registers, respectively. The last operand is used
for destination vector register. Four primitive StVEC single-
precision floating point vector operations are shown in
Table II. The same pattern is used for double-precision
instructions as well.
Note that StVEC instructions are designed as register-

register type such that all source operands are vector regis-
ters. Register-memory or register-immediate formats have to
be converted by the compiler to sequence of move-compute
operations in order to be mapped to register-register style.
To illustrate how to use the StVEC format, suppose stvadd

instruction is generated with the following operands:

stvadd $2,VR2,VR0,VR7

According to the Table II, the execution results in adding
VR7 with an operand whose first two elements are taken
from VR2 and the second two elements are taken from VR0.
So, for a vector of size 4 and offset of 2, we have:

VR7 = VR7 +VR2{2 : 2},VR0{0 : 2}

278279

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

D. Decoding StVEC Instructions

Decoding StVEC instructions requires special handling of
the base and extension registers and also the offset value.
The Decoder generates distinct addresses for each of the
vector register banks using the Bank Address Generator
(BAG) logic. The BAG logic uses base and extension register
specifiers (7-bit each, in this case) plus the offset value to
compute the address for each register bank.
The four bank addresses will be carried along the other

information with the vector operand to the operand-read
stage where they will be fed to the register file. Note that
the BAG logic can be implemented anywhere in the pipeline,
after the renaming logic and before the register-read stages.
StVEC instructions read their second operand in two

different registers. As a result, they are dependent on three
registers rather than two in the case of regular vector
operations. These dependencies have to be enforced by the
out-of-order scheduling logic. For instance, if the processor
uses reservation stations to store pending instructions, reser-
vation station entries need to have one additional pointer
to the instruction generating the third register value. The
same is true for a reorder buffer-based implementation. The
scheduling logic has to enforce these dependencies and not
allow the dispatch of an instruction until all dependent
registers are available. In theory, adding an extra dependency
could slow down execution. In practice this is not an issue
because these are true dependencies for stencil codes and
the input operands have to be in the register file anyway
before execution can proceed.

E. Modified Vector Register File

The second change in the pipeline is re-structuring the
vector register file. In general, a vector register file (VRF)
is constructed of multiple register banks, each containing
one single element. Number of banks is equal to the vector
width and number of such physical registers is the same
as number of rows in the VRF. In order to demonstrate
the architectural changes, we use a sample VRF model
containing 128 registers of 128-bit wide each (4 32-bit
banks). Note that there is no hardware change introduced
to the vector load instructions by StVEC. Therefore, unlike
read ports, write ports of the vector register file are not
subject to any hardware changes.
To read a 4-wide vector (128-bit), a 7-bit register specifier

is fed into the VRF. The corresponding read-port decoder
activates word-select lines of the banks accordingly which
causes the same row to be selected in all the four banks.
When words are read from the banks, i.e. at the end of
the register-read stage, slot 0 of the output vector operand
contains a word from bank 0, slot 1 from bank 1 and so on.
In this normal vector read operation, words are placed in the
appropriate output slots such that no adjustment operation
(i.e. shift or rotate) will be required.

Offset W0 W1 W2 W3

0x00 B0 B1 B2 B3

0x01 B1 B2 B3 B0

0x02 B2 B3 B0 B1

0x03 B3 B0 B1 B2

Table III
VECTOR REGISTER ADJUSTMENT (VRA) MAPPING BETWEEN BANKS’

OUTPUTS (B) AND FINAL ADJUSTED ELEMENTS (W).

However, in order to support StVEC execution model,
VRF has to be modified in the following way. Each bank
is provided with its own 7-bit address. Instead of having a
single decoder feeding the signals (i.e. bit/line select) into all
four banks, each bank is outfitted with its own decoder. This
is designed to facilitate read accesses to arbitrary registers
of each bank. In addition, each bank can provide elements
associated to any position in the final output. To support
this, we add Vector Register Adjustment (VRA) logic to the
output of the VRF. The VRA shifts the register elements to
the appropriate positions in the operand (e.g. a block from
bank 2 is moved to position 0 in the output when the offset
is 0x02). The new VRF design is shown in Figure 4.

Figure 4. Read-port of a modified VRF including the VRA logic.

VRA logic is similar to a shifter except for the offset value
which does not directly imply the "shift amount". Table
III presents the mapping between the offset value, output
elements of the banks (B0, B1, B2, and B3) and also the
final adjusted elements (W0, W1, W2 and W3).

For aligned operands (offset zero), B elements will be
assigned to W s, with no shift involved. But, in cases where
offset is not zero (i.e. an unaligned operand), the VRA
connects B elements to appropriate output W slots in order
to build the final "aligned" output.

F. Generalizing StVEC

The requirement for an architecture to support StVEC exe-
cution model is to be able to decode the proposed instruction
format and feature the vector register file such that arbitrary
elements spread across different rows can be obtained by

279280

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

one register read operation. Such a general extension can
be implemented on top of the existing SIMD ISAs, such as
Intel’s SSE or AVX families and IBM-Freescale-Motorola’s
AltiVec (known as VMX) family. Note that performance
improvement achieved by StVEC extension (as will be
shown in Section V) substantially depends on the underlying
architecture and on the penalty paid by executing unaligned
memory accesses and data manipulation instructions.

III. CODE GENERATION

In this section, we describe the compiler algorithm for
code generation. We first discuss how to create vectorized
code for stencil loops using standard vector intrinsics. Then
we show how to generate code to use StVEC instructions.

A. Program Representation

The code generation algorithm operates on an abstract
syntax tree (AST) representation of the input program,
suitable for detection of innermost loops as well as complex
loop transformations such as peeling, unrolling and software
pipelining. We assume the code is in three-address form,
in order to simplify the process of copying and/or moving
specific operations in the loop. The focus of our algorithm
is innermost loops that are vectorizable; we assume the re-
quired transformations have been done beforehand to expose
such loops [8].
We assume candidate innermost vectorizable loops have

the following properties:
• Loop bounds are expressions that do not change during

an execution of the loop.
• The loop induction variable increments by steps of 1.
• Dependence analysis ensures the absence of loop-

carried dependences in the loop.
• The loop has a single entry and single exit point.
We require all memory references in the innermost loop to

be of stride-0 or stride-1. That is, for all memory references,
two consecutive iterations of the loop must either access
two consecutive data elements in memory (stride 1) or
the same element in memory (stride 0). Note that stride-1
implies that the innermost loop iterator appears only in the
right-most dimension of an array reference for row-major
implementation of arrays in languages like C/C++.
Without loss of generality, for the context where the

StVEC-based code generation is performed, the expres-
sion expr used to dereference a memory address (e.g. in
A[..][expr]) is of the form

expr = liexpr + iterator + c

where liexpr is an arbitrary expression of program sym-
bols whose value is loop invariant during loop execution,
iterator is the loop iterator and c is an arbitrary scalar
constant. For instance, in the reference A[i][42*N + j
+ 3] with j as the innermost loop iterator, 42∗N is a loop
invariant expression if N is never assigned in the loop j,
and c = 3 is the scalar constant for the reference.

B. Auto-vectorization Using Intrinsics

In the following, we present a target-independent algo-
rithm to generate vector intrinsics using vectors of size W ,
with abstract intrinsics such as vadd, etc. to represent vector
operations. Our experiments (discussed in Section. V) are
based on the SSE and AVX vector instruction sets, but the
code generation approach can be used with other vector
instruction sets such as Altivec, LRBni, etc.
1) Basic Vector Intrinsics Generation: The input to this

algorithm is a representation of an innermost vectorizable
loop that conforms to the conditions stated above. We
now describe a systematic vector code synthesis scheme to
translate this loop into a SIMDized loop, using standard
vector intrinsics (such as SSE intrinsics; but we use an
abstract notation instead of a target specific notation).
The first stage of the algorithm is to create a basic

SIMDized version of the loop, where each stride-1 read
memory reference in the scalar code is translated to a vector
load in the generated code. Note that to preserve clarity,
we outline a general algorithm operating on abstract vector
operations, which does not distinguish between aligned
and unaligned data. Later in this section, we explain how
code can be generated using only aligned loads exclusively,
thereby avoiding any overheads of unaligned loads.
The algorithm proceeds as follows, on each candidate

innermost loop L:
1. Peel a suitable number of iterations at the end of the
loop, so that the number of vectorized iterations is a perfect
multiple of the vector length.
2. Change the loop to increment by the vector length.
3. For all variables V with stride-0 access in L, splat V
into a vector temporary Vtmp and substitute the references
to V in L with Vtmp.
4. For all read references rr with stride-1 access in L, create
a vector load VLtmp and insert it before the reference, and
substitute the reference rr with VLtmp.
5. For all write references rw with stride-1 access in L,
create a vector store VS tmp and insert it after the reference,
and substitute the reference rw with VS tmp.
6. Remove unnecessary loads and store, typically coming
from multiple reads to the same address. Compute use-def
chains to remove loads and stores to temporaries.
7. Substitute all arithmetic operations with their vector
equivalent.

We illustrate the application of the algorithm using the
simple example shown in Figure 5(a). The translation code
with vector intrinsics is shown in Figure 5(b). Note that for
simplicity the lower boundary of the loop (lba) in Figure 5
is assumed to be an aligned version of the original one (lb).

2) Software Pipelining: The above algorithm presents a
simple translation of a loop into its vector equivalent, by
using multiple vector loads for adjacent memory accesses.
In order to improve the efficiency of the generated code

280281

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

for (i = lb; i < ub; ++i)
B[i] = (A[i] + A[i+1])*0.5;

(a)

mub = ub - (ub % W);
V1 = vsplat(0.5);
for (i = lba; i < mub; i+= W){

V2 = vload(&A[i]);
V3 = vload(&A[i+1]);
V4 = vadd(V2, V3);
V5 = vmul(V4, V1);
vstore(&B[i], V5);

}
for (; i < ub; ++i)

B[i] = (A[i] + A[i+1])*0.5;

mub = ub - (ub % 2*W);
V1 = vsplat(0.5);
V2_1 = vload(&A[0]);
V3_1 = vload(&A[1]);
for (i = lba; i < mub - W; i += 2*W){

V2_2 = vload(&A[i+W]);
V3_2 = vload(&A[i+1+W]);
V4 = vadd(V2_1, V3_1);
V5 = vmul(V4, V1);
vstore(&B[i], V5);
V2_1 = vload(&A[i+W+W]);
V3_1 = vload(&A[i+1+W+W]);
V4 = vadd(V2_2, V3_2);
V5 = vmul(V4, V1);
vstore(&B[i+W], V5);

}
V4 = vadd(V2_1, V3_1);
V5 = vmul(V4, V1);
vstore(&B[i], V5);
for (; i < ub; ++i)

B[i] = (A[i] + A[i+1])*0.5;

mub = ub - (ub % 3*W);
V1 = vsplat(0.5);
V2_1 = vload(&A[0]);
V3_1 = vload(&A[W]);
for (i = lba; i < mub - W; i += 3*W){

V2_2 = vload(&A[i+W+W]);
V4 = stvadd(V2_1, V2_1, V3_1, 1);
V5 = vmul(V4, V1);
vstore(&B[i], V5);
V2_1 = vload(&A[i+W+W+W]);
V4 = stvadd(V3_1, V3_1, V2_2, 1);
V5 = vmul(V4, V1);
vstore(&B[i+W], V5);
V3_1 = vload(&A[i+W+W+W+W]);
V4 = stvadd(V2_2, V2_2, V2_1, 1);
V5 = vmul(V4, V1);
vstore(&B[i+W+W], V5);

}
V4 = stvadd(V2_1, V2_1, V3_1, 1);
V5 = vmul(V4, V1);
vstore(&B[i], V5);
for (; i < ub; ++i)

B[i] = (A[i] + A[i+1])*0.5;

(b) (c) (d)

Figure 5. StVEC code generation example: original loop (a), intrinsics translation (b), intrinsics plus software-pipeline (c) final StVEC code (d).

we perform software pipelining [9]. The objective is to
overlap computation and data movement, benefiting from
instruction-level parallelism. We illustrate this with 2-stage
pipelining, where data is fetched one iteration ahead of its
use. The algorithm for software pipelining is sketched as
follows:
1. Make a copy of the relevant vload operations before
the loop. Rename the associated vector variables from VX

to VX 1 in the copy created.
2. Re-time the vload by one iteration in the loop body,
and rename the associated vector variables from VX to
VX 2.
3. Change references to VX into VX 1 in the arithmetic
vector operations in the loop body.
4. Make a copy of the relevant vector operations (vstore
and arithmetic vector operations) after the loop. Rename
the associated vector variables from VX to VX 2 in the
copy created.
5. Peel the last iteration of the loop.
6. Unroll the loop by two, as we use a two-stage software
pipelining, to avoid the need for variable swap.
7. In the part of the loop body corresponding to the second
loop iteration unrolled, substitute all references to VX 1 by
VX 2, and conversely.

Returning to the above example, the software-pipelined
version is shown in Figure 5(c).

C. Integration of StVEC extension

We now present the code generation technique to use
the StVEC ISA extension we have proposed. Our approach
is based on the introduction of four new vector intrinsics,
and the required modification to our vector code synthesis
algorithm to use them.

1) New Intrinsics Proposed: Standard vector intrinsics
such as vadd, vmul, vsub and vdiv operate on two
vector variables and perform the arithmetic operation on
these two vectors. Our extension consists in four new
intrinsics that each use three vectors and an offset. They
are shown in Figure 6.

Standard Extended
V1 = vadd (V2, V3) V1 = stvadd (V2, V3, V4, offset)
V1 = vsub (V2, V3) V1 = stvsub (V2, V3, V4, offset)
V1 = vmul (V2, V3) V1 = stvmul (V2, V3, V4, offset)
V1 = vdiv (V2, V3) V1 = stvdiv (V2, V3, V4, offset)

Figure 6. New intrinsics

In the above, the arithmetic vector operation will use parts
of V3 and V4 to form the second operand of the vector
operation. The offset argument is used to specify how
many elements come from V3 and how many from V4, as
discussed in Section II.
2) Modified Code Generation Algorithm: In the basic

code generation algorithm, there is one vector load per mem-
ory reference. When accessing A[i:W] (i:W represents
the W consecutive elements of A starting from the address
i) and A[i+1:W] in the same loop iteration, two distinct
loads are performed at each iteration. Neither of the vectors
A[i:W] or A[i+1:W] is reused at the next iteration.
Our ISA extension allows the formation of A[i+1:W]
from A[i:W] and A[i+W:W]. An immediate benefit is the
ability to reuse A[i+W:W] at the next iteration.
The modified code generation algorithm works by de-

tecting the set(s) of vload operations such that there are
common scalar elements loaded from memory. Given two
vector loads vload(addr1) and vload(addr2), they
load common scalar elements iff:

|addr1− addr2| < W (1)

281282

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

If Eq (1) is true, then the vector arithmetic operations
using these two loads can be converted into their stvxx
equivalent. More precisely, the code generation algorithm
constrains one of the two operands to be memory aligned.
For the promotion to actually occur, we either have
addr1%W = 0 or addr2%W = 0.

The algorithm is outlined as follows, and proceeds by
analyzing the various vector loads generated by the previous
basic vector intrinsics generation scheme:
1. Peel the x first loop iteration(s) if (lb +
liexprarrays)%W �= 0, x < W . The actual value of
x is determined at run-time, so that the loop lower bound
lba maximizes the number of aligned memory references in
the loop. Perform additional statement retiming to minimize
the number of unaligned loads (details are provided in
Section III-D).
2. Generate a basic intrinsics version, according to the
previous algorithm (without software pipelining).
3. Given a set of vector loads to the same array, of the
form A[cst+i+c:W], for all k ≥ 0 and until unprocessed
loads remain, do
3.1. take the set of the n vector loads VLp, 0 < p < n such
that k.W ≤ |cp| < (k + 1).W ,
3.2. if there is no aligned reference in the set (e.g.
∀p, cp%W = 0) or only one reference in the set, proceed
with the next set,
3.3. otherwise insert a vector load VLnew which loads from
the address cst + i + (k + sign(cp)).W , convert all vector
operations that consume VLp such that one of the two
operands is either a vector loaded aligned or a local variable,
into the corresponding stvxxx equivalent. If cp > 0,
the operand VLp is replaced by VLalign,VLnew, offset,
where VLalign corresponds to the vector load of address
i + k.W , and offset = cp%W . If cp < 0, the operand
VLp is replaced by VLnew,VLalign, offset where
offset = W − cp%W .
4. Perform dead-code elimination, to remove vector loads
made useless through the stvxxx promotion.
5. Perform a 3-stage software pipelining, to maximize the
reuse of the vector loads for the stvxxx operations. Three
stages are required to avoid register copy since the extended
intrinsics address 3 vectors operands.

To illustrate the algorithm, we show its application on the
running example in Figure 5(d).

D. Avoiding All Unaligned Loads

The stvxxx operations allow the formation of one of the
operands from two registers that contain consecutive data
elements. We have discussed how loading only aligned data
in these two registers is enough for the stvxxx second
operand. Further, our design requires the first operand to
also be aligned. In other words, for the promotion of a vec-
tor arithmetic operation into its stvxxx equivalent, three

registers formed with aligned data are required. This implies
the equivalence of the problem of maximizing the number
of promotions to stvxxx operations with the problem of
minimizing the number of unaligned loads.
Consider cst + i + c, the index expression of an array

used as an operand in an arithmetic operation in the original
program, with lb the value of the first iteration of the loop i.
It requires only aligned vector loads if (cst+lb+c)%W = 0.
That is, if this property is verified for one of the two
operands of each of the operations that are the first to
consume data elements from the main memory, the promo-
tion to the stvxxx equivalent operation is possible and no
unaligned load is needed for this operation
Each operation can be retimed freely (that is, iteration

shifting is applied to this specific operation to modify which
specific instance of the statements is executed in the same
iteration of the loop i) provided all dependent operations are
retimed by the same factor. Retiming changes which data
element is accessed at a given iteration, i.e., affects whether
or not the data elements accessed at the first iteration are
aligned in memory. Consider the example below:

for (i = lb; i < ub; ++i) {
B[i] = A[i] + A[i+1]; // R
D[i] = A[i+2] + A[i+3]; // S

}

Retiming S by +2 leads to the following code:

for (i = lb; i < lb + 2; ++i)
B[i] = A[i] + A[i+1]; // R

for (i = lb + 2; i < ub; ++i) {
B[i] = A[i] + A[i+1]; // R
D[i-2] = A[i] + A[i+1]; // S

}
for (i = ub; i < ub + 2; ++i)

D[i-2] = A[i] + A[i+1]; // S

After retiming, A[i] is an operand of both operations.
As soon as (lb + 2)%W = 0, the vector loads required
for these operations only loads aligned data. Since we can
always dynamically peel iterations of the loop such that
(lba)%W = 0, with x being the number of peeled iterations
and lba = lb + 2 + x, the loop lower bound in the above
example, only aligned loads are required. In general, the
retiming factor σR is chosen such that, for the first consumed
operand, we have cR = σR. This allows the use of only
aligned loads for this operand. We generalize this reasoning
by considering the only existing retiming constraint between
operations: all dependent operations are to be retimed with
the same σ factor to ensure that semantics is preserved. Since
we focus on synchronization-free inner loops, we note that
there is no loop-carried dependence. This implies that for the
operations S1, S2, ..., Sn which are in dependence, the array
index function that causes the dependence is identical in the
chain of dependent operations, i.e., cS1 = cS2 = ... = cSn.
This implies that the retiming factors required to align the
operand’s data access are σS1 = σS2 = ... = σSn, which
will preserve the semantics. By computing individual σ

282283

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

factors for each set of dependent operations in our 3-address
representation, it is thus possible to eliminate all unaligned
loads on arithmetic operations.

IV. EVALUATION METHODOLOGY

The effectiveness of our design was assessed by using
a number of stencil benchmarks, using a combination of
optimistic and pessimistic emulation on four different pro-
cessors, as explained below.

A. Baseline Implementation:

The baseline for comparison (named sp-intrin) was an
implementation of the kernels using standard SSE intrinsics,
as described in the first part of Section III. The generated
codes use two-way unrolling and software pipelining to
perform register loads in the loop iteration prior to use.

B. StVEC Implementations:

Code using StVEC intrinsics was generated, as explained
in Section III. This code was then transformed to create three
variants.
For the st-func variant, each StVEC intrinsic was replaced

by a sequence of standard SSE intrinsics that implement the
new intrinsic’s functionality. This version was used to verify
functional correctness of the generated StVEC code.
The st-pes variant is a pessimistic emulation of the ex-

tended instructions in that each stvxxx instruction in the
generated code (st-func) was replaced by a sequence of two
vector arithmetic operations. For instance, the instruction
"stvmul 1, VR0, VR4, VR7" would be replaced by the
following two vector multiplications:

vmul VR4, VR0

vmul VR7, VR4

This version is intended to mimic all data dependences of
the StVEC instruction and an execution upper bound on
the time required for the StVEC instruction by executing
a sequence of two vector arithmetic operations available on
existing processors.
The st-opt variant is an optimistic version that was gen-

erated by replacing the StVEC intrinsics simply with a
standard SSE intrinsic for that arithmetic operation, using
only one of the two paired registers in the StVEC intrinsic.
This version serves as a basis for measuring a lower bound
for the execution time of the StVEC based program. For
the previously considered example, the st-opt version of
the stvmul intrinsic would execute only one vector mul-
tiplication, "vmul VR7, VR4". Note that for any stvxxx,
among all the three source registers (first operand, second-
base and second-extension), the extension register (i.e. VR4)
is the latest one which is defined in the program sequence,
according to our code generation algorithm.
In our evaluation, we considered the auto-vectorization

performance by compiling a C version of the kernel, using
the highest levels of compiler optimization. We used both
ICC and GCC for our evaluation.

C. Experimental Setup

The hardware platforms used for our experiments are four
x86-64 based machines: Intel Sandy Bridge, Intel Core i7-
920 (Nehalem microarchitecture), Intel Core2 Quad Q6600,
and AMD Phenom 9850BE (K10h microarchitecture). We
use the following labels to refer to the four machines: i7-
sb, i7-n, core2 and phenom. Machine characteristics are
provided in Table IV.

Machine GHz Cores SIMD ISA Peak (GFlop/s)
i7-sb 3.4 4 SSE4.2 + AVX ∼ 56
i7-n 2.66 8 SSE4.2 ∼ 21
core2 2.4 4 SSSE3 ∼ 19
phenom 2.5 4 SSE4 ∼ 20

Table IV
HARDWARE PLATFORMS USED FOR EMULATING STVEC

INSTRUCTIONS.

The peak throughput for the machines is shown for single-
precision. The double-precision peak performance is around
half that for single-precision. Vector data movement and
manipulation instructions perform differently on the four
platforms, even though all are x86-64 architectures.
Two compilers, GCC (version 4.4.4) and ICC (version

12.0) were used for the experimental study. Table V lists
different compiler optimization options used for enabling
auto-vectorization on different machines.

Options
Compiler Common i7-sb i7-n core2 phenom
ICC -fast -xavx -msse4.2 -msse3 -msse4
GCC -O3 -mavx -msse4.2 -msse3 -msse4

Table V
OPTIMIZATION OPTIONS FOR ICC/GCC ON DIFFERENT MACHINES.

D. Stencil Benchmarks

A set of twelve stencil kernels was used to evaluate
this work. The Jacobi kernels form a symmetric stencil
pattern been used in many scientific computations, including
image processing as well as explicit PDE solvers. We
experimented with Jacobi stencils in one-dimension (2, 3, 5
and 7 points), 2D (5 and 9 points) and also 3D (27 points)
with different weights for different points. We label the
Jacobi kernels in the results section using dimensionality and
number of points (i.e. j2d5p represents 2-D 5-Point Jacobi).
The Parallel Ocean Program (POP) is an ocean circulation
model that solves the three-dimensional primitive equations
and computes finite-difference discretizations. The two most
compute-intensive loop nests of the POP code (as labeled
pop1 and pop2) differ from the Jacobi stencils in that the
weights (coefficients) are different at each grid point. The
fdtd 2D kernel represents the core computation in the Finite
Difference Time Domain method, widely used in compu-
tational electromagnetics. The rician 2D denoising kernel
is used to remove noise from MRI images by repeatedly
executing a stencil computation. Finally, the heattut 3D is

283284

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

 0

 0.5

 1

 1.5

 2

 2.5

 3

icc
gcc

icc
gcc

icc
gcc

icc
gcc

A
v
e

ra
g

e
 S

p
e

e
d

u
p

autovec st-pes st-opt

i7-sb

i7-n

core2

phenom

(a) Single Precision

 0

 0.5

 1

 1.5

 2

 2.5

 3

icc
gcc

icc
gcc

icc
gcc

icc
gcc

A
v
e

ra
g

e
 S

p
e

e
d

u
p

autovec st-pes st-opt

i7-sb

i7-n
core2

phenom

(b) Double Precision

Figure 7. Average (geometric means) of relative speedup with StVEC for single and double precision across machines and compilers.

a kernel from the Berkeley stencil probe [10] based on a
discretization of the heat equation PDE.

V. EXPERIMENTAL RESULTS

A. Performance Evaluation

We evaluate StVEC’s performance on multiple bench-
marks, across different machines and with two different
compilers. The goal is to observe StVEC’s performance on
a wide range of platforms. The results are summarized in
Figure 7. We show the geometric mean of runtime relative
to the baseline (sp-intrin). For StVEC, we show the two
versions st-pes and st-opt. For reference we also include
performance obtained by automatic vectorization for each
compiler (autovec). We show data for both single precision
Figure 7(a) and double precision Figure 7(b) operations.
StVEC demonstrates consistent performance improvement

across the two different compilers (ICC and GCC), on all the
machines. With GCC, the StVEC performance improvement
ranges from 20% on the phenom to 2.47× on the core2 for
st-opt and 7% to 2.26× for st-pes. The ICC improvements
are very similar. Also note that both st-opt and st-pes cases
are consistently higher than autovec.

StVEC performance improvement is, on average, much
higher for core2 that for the other machines. This is be-
cause unaligned memory instructions are very expensive on
the Core 2 system. By eliminating these accesses, StVEC
achieves a dramatic reduction in execution time.
StVEC performance improvements also scale well to

double precision operations. Figure 7 shows average per-
formance improvements ranging from 30 to 65% with GCC
and 32 to 53% with ICC for st-opt. For double precision,
StVEC does not achieve as large a speedup as for single
precision on the Core 2 system. This is because double
precision code uses fewer unaligned memory operations that
can be eliminated by StVEC.
For reference absolute performance numbers (in GFlop/s)

of the baseline kernel, sp-intrin, on different machines and
compilers and for all the benchmarks are shown in Table VI.
We also take a closer look at StVEC’s performance

across the benchmarks we test. Figure 8 and Figure 9
show relative speedup for StVEC for single and double

Abs. i7-sb i7-n core2 phenom
GFlops SP DP SP DP SP DP SP DP

j1d2p
25.3 12.4 10.4 5.2 3.3 3.3 7.9 3.7
20.9 10.6 12.3 4.5 2.3 3.6 8.9 4.5

j1d3p
22.9 11.5 12.6 5.5 3.3 4.3 9.9 4.5
18.5 9.2 14.2 6.0 3.3 3.4 9.3 4.9

j1d5p
21.2 16.6 13.2 7.8 5.0 4.2 11.7 4.5
10.5 8.7 13.9 7.9 4.6 3.7 11.9 6.3

j1d7p
18.9 11.8 11.1 6.0 4.3 4.5 11.0 4.8
8.6 3.7 9.3 5.1 3.9 3.6 9.9 5.4

j2d5p
31.4 16.6 13.0 5.8 5.4 4.9 10.3 5.2
27.2 14.7 10.6 4.6 5.0 3.1 11.6 6.0

j2d9p
24.2 9.1 13.2 5.0 3.3 3.3 8.3 3.4
19.4 7.6 10.7 3.2 3.1 2.4 8.0 2.8

j3d27p
13.0 8.0 8.4 4.8 3.5 3.2 5.8 3.0
8.1 3.6 3.5 1.9 2.1 1.4 2.0 1.1

pop1
12.3 6.5 6.5 3.4 2.6 2.3 4.3 2.3
7.6 4.2 3.6 1.9 1.8 1.4 2.6 1.2

pop2
12.3 6.7 8.0 4.0 2.8 2.5 5.6 2.5
7.5 4.2 3.8 1.9 2.0 1.4 2.6 1.5

fdtd
18.0 9.5 9.1 4.6 4.0 3.6 6.0 3.1
11.4 7.4 6.0 3.0 3.4 2.2 5.4 2.8

heattut
17.0 9.3 8.5 3.3 4.2 3.4 6.7 3.0
14.4 7.8 6.1 3.2 3.7 2.4 5.7 3.3

rician
14.7 3.3 11.2 2.1 5.5 1.2 5.4 2.0
11.4 3.0 8.6 2.1 4.8 1.1 4.4 1.9

Table VI
ABSOLUTE PERFORMANCE NUMBERS FOR BASELINE CODE (sp-intrin):

ICC (TOP) AND GCC (BOTTOM).

precision benchmarks, respectively. Note that both st-opt and
st-pes kernels show significant improvement over most the
stencil kernels. The only exceptions are fdtd which sees a
performance degradation and rician which sees virtually no
performance gain. The fdtd benchmark uses 2-point stencil
pattern in the outer loop which is not beneficial with the
StVEC execution model, where stencils in the innermost
loop can only benefit the ISA enhancement.
rician is another case where there is little benefit from

StVEC. Although rician uses stencil code, its execution
time is mostly dominated by vector division operations
which are very expensive across all the hardware platforms.
Consequently, eliminating unaligned memory operations and
shuffle operations has only marginal benefits.
Overall, StVEC achieves very significant performance

improvements which are consistent across most benchmarks,
different compilers, architectures and computation preci-

284285

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

R
e
la

ti
v
e
 S

p
e
e
d
u
p

st-pes
st-opt

ricianheattutfdtdpop2pop1j3d27pj2d9pj2d5pj1d7pj1d5pj1d3pj1d2p

Figure 8. Summary of single-precision improvement across machines.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

i7
-s

b

i7
-n

c
o
re

2

p
h
e
n
o
m

R
e
la

ti
v
e
 S

p
e
e
d
u
p

st-pes
st-opt

ricianheattutfdtdpop2pop1j3d27pj2d9pj2d5pj1d7pj1d5pj1d3pj1d2p

Figure 9. Summary of double-precision improvement across machines.

sions. This shows that eliminating unaligned loads and
efficiently re-using already loaded elements is beneficial for
cases where unaligned memory access and data manipulation
instructions are very expensive (or for architectures that do
not support unaligned operations such as such as the IBM
Power).

B. Hardware Overhead

To estimate the overhead of the additional hardware
required by StVEC, we build a model of the StVEC Register
File using CACTI [11]. We augment this model with delay
information for the Vector Register Adjustment logic (Fig-
ure 4) required by StVEC. The Vector Register Adjustment
logic design was synthesized using the Synopsys Design
Compiler [12] for 45nm technology using Nangate’s Open
Cell Library [13]. The synthesized logic is used to determine
the additional delay introduced by VRA.

Regs. # Banks Reg. size (bits) BVRF (ns) StVRF (ns)

128 4 128 0.24 0.30
256 4 128 0.26 0.32
128 8 256 0.34 0.47
256 8 256 0.37 0.50

Table VII
ACCESS TIME FOR BASELINE AND STVEC VECTOR REGISTER FILES

(BVRF AND STVRF) IN 45NM CMOS TECHNOLOGY.

Table VII shows the access time for the StVEC Vector
Register File (StVRF) compared to a baseline Vector Reg-
ister File (BVRF). We show access time for 128 and 256-
entry register files with 128 bit (4 word) and 256 bit (8

word) registers. The VRA overhead ranges from 25% to
37% of the total VRF access time. Note that the standard
cell library used in the synthesis is not a production library.
As a result, the delay measurements are conservative. This
overhead can be reduced by using high-speed custom logic.
Even with the additional overhead, the StVRF can still be
accessed in a single cycle at 3GHz (128 bit configuration)
or at 2GHz (256 bit configuration).

VI. RELATED WORK

Several recent studies [1], [2], [3], [4], [5], [6]. have
reported on different aspects of optimizing stencil compu-
tations, including tiling, effective vectorization, and paral-
lelization on shared-memory and distributed-memory sys-
tems, as well as GPUs. However, we are unaware of any
work that has proposed a architecture/compiler approach to
optimizing stencil computations.
Vectorization for short-vector SIMD architectures has also

been a subject of much research [14], [15], [16], [17]. The
majority of work on this topic addresses compiler algorithms
for generating efficient code for existing SIMD architectures.
In contrast, in this paper, we propose a hardware/compiler
approach to enhancing the performance of stencil computa-
tions on short-vector SIMD architectures.
Previous work has examined the benefits of flexible access

and addressing of the register file. For instance, row-wise
and column-wise access has been proposed for speeding
up matrix operations [18], [19], [20]. These designs are
generally more complex than StVEC because they require

285286

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

concurrent addressing and access to arbitrary words in the
register file, including accessing the same word in different
registers, needed for column-wise access. This requires a
complete redesign of the register file, with word level
address decoding. In [21], a flexible permutation of arbitrary-
sized data blocks within SIMD registers is proposed. But
unlike StVEC, it does not allow operands to span multiple
registers.
Henretty et al. have proposed a software-based method

to address the stream-alignment conflict of stencils [22].
Their technique requires either a program-wide data-layout
transformation or a data layout conversion before and after
stencil computations. In contrast, our approach imposes no
global layout constraints or data layout conversion overhead.

VII. CONCLUSION

This paper has addressed a fundamental performance
limiting factor with implementation of stencil computations
using current short-vector SIMD instruction sets such as SSE
— due to the unavoidable overhead of performing multiple
loads of data elements from memory or inter-register shuffle
operations. An enhanced addressing mode was introduced
that allows data elements from two different vector registers
to be combined to form operands for vector instructions. A
hardware implementation of register files was developed to
implement the enhanced addressing mode and a compiler
code generation scheme was described for the enhanced
vector instruction set architecture. The effectiveness of the
new architecture and code generation strategy were demon-
strated by using a combination of optimistic and pessimistic
emulation on four different x86 CPUs.

ACKNOWLEDGMENTS

We are very thankful to the PACT’11 reviewers and
program committee for the valuable comments and feedback.
We also thank J. Holewinski, T. Henretty, A. Ashari, M. Rav-
ishankar and J. Eisenlohr for their support, comments and
suggestions. This research was supported in part by funding
for the Center for Domain-Specific Computing (CDSC)
through the NSF Expedition in Computing Award CCF-
0926127.

REFERENCES

[1] W. Augustin, V. Heuveline, and J. Weiss, “Optimized stencil
computation using in-place calculation on modern multicore
systems,” in Euro-Par, 2009.

[2] H. Dursun, K.-I. Nomura, L. Peng, R. Seymour, W. Wang,
R. K. Kalia, A. Nakano, and P. Vashishta, “A multilevel par-
allelization framework for high-order stencil computations,”
in Euro-Par, 2009.

[3] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. Yelick, “Optimization and performance modeling of sten-
cil computations on modern microprocessors,” SIAM Rev.,
vol. 51, no. 1, 2009.

[4] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanu-
jam, A. Rountev, and P. Sadayappan, “Effective automatic
parallelization of stencil computations,” in PLDI, 2007.

[5] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik,
V. Saraswat, and S. Seshia, “Sketching stencils,” in PLDI,
2007.

[6] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske,
“Efficient temporal blocking for stencil computations by
multicore-aware wavefront parallelization,” in COMPSAC,
2009.

[7] M. Wolfe, “More iteration space tiling,” in Supercomputing,
1989.

[8] K. Kennedy and J. Allen, Optimizing compilers for modern
architectures: A dependence-based approach. Morgan Kauf-
mann, 2002.

[9] M. S. Lam, “Software pipelining: An effective scheduling
technique for vliw machines,” in PLDI, 1988.

[10] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Im-
pact of modern memory subsystems on cache optimizations
for stencil computations,” in MSP, 2005.

[11] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” HP Labs, Tech.
Rep. HPL-2009-85, 2009.

[12] “Synopsys Design Compiler,” http://synopsys.com.

[13] “Nangate Open Cell Library,” http://www.nangate.com/.

[14] A. E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for
SIMD architectures with alignment constraints,” SIGPLAN
Not., vol. 39, no. 6, 2004.

[15] L. Fireman, E. Petrank, and A. Zaks, “New algorithms for
SIMD alignment,” in CC, 2007.

[16] M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, and
H. Meyr, “A SIMD optimization framework for retargetable
compilers,” ACM Trans. Archit. Code Optim., vol. 6, no. 1,
2009.

[17] D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited
for short SIMD architectures,” in PACT, 2008.

[18] Y. Jung, S. Berg, D. Kim, and Y. Kim, “A register file with
transposed access mode,” in ICCD, 2000.

[19] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Matrix
register file and extended subwords: two techniques for em-
bedded media processors,” in CF, 2005.

[20] B. Hanounik and X. Hu, “Liner-time matrix transpose algo-
rithms using vector register file with diagonal registers,” in
IPDPS, 2001.

[21] L. Huang, L. Shen, Z. Wang, W. Shi, N. Xiao, and S. Ma,
“SIF: overcoming the limitations of SIMD devices via im-
plicit permutation,” in HPCA, 2010.

[22] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ra-
manujam, and P. Sadayappan, “Data layout transformation
for stencil computations on short-vector simd architectures,”
in CC, 2011.

286287

Authorized licensed use limited to: The Ohio State University. Downloaded on November 13,2024 at 02:43:52 UTC from IEEE Xplore. Restrictions apply.

