
Core Tunneling: Variation-Aware
Voltage Noise Mitigation in GPUs∗

Renji Thomas Kristin Barber Naser Sedaghati Li Zhou
Radu Teodorescu

Department of Computer Science and Engineering
The Ohio State University

{thomasr, barberk, sedaghat, zholi, teodores}@cse.ohio-state.edu

ABSTRACT
Voltage noise and manufacturing process variation rep-
resent significant reliability challenges for modern micro-
processors. Voltage noise is caused by rapid changes in
processor activity that can lead to timing violations and
errors. Process variation is caused by manufacturing
challenges in low-nanometer technologies and can lead
to significant heterogeneity in performance and reliabil-
ity across the chip. To ensure correct execution under
worst-case conditions, chip designers generally add oper-
ating margins that are often unnecessarily conservative
for most use cases, which results in wasted energy.

This paper investigates the combined effects of process
variation and voltage noise on modern GPU architec-
tures. A distributed power delivery and process variation
model at functional unit granularity was developed and
used to simulate supply voltage behavior in a multicore
GPU system. We observed that, just like in CPUs, large
changes in power demand can lead to significant volt-
age droops. We also note that process variation makes
some cores much more vulnerable to noise than others
in the same GPU. Therefore, protecting the chip against
large voltage droops by using fixed and uniform voltage
guardbands is costly and inefficient.

This paper presents core tunneling, a variation-aware
solution for dynamically reducing voltage margins. The
system relies on hardware critical path monitors to detect
voltage noise conditions and quickly reacts by clock-
gating vulnerable cores to prevent timing violations.
This allows a substantial reduction in voltage margins.
Since clock gating is enabled infrequently and only on
the most vulnerable cores, the performance impact of
core tunneling is very low. On average, core tunneling
reduces energy consumption by 15%.

1. INTRODUCTION
Graphics processing units (GPUs) are increasingly

used as high-performance and energy-efficient acceler-
ators for general purpose computing. However, hard

∗This work was supported in part by the Defense Advanced
Research Projects Agency under the PERFECT (DARPA-
BAA-12-24) program and the National Science Foundation
under grant CCF-1253933.
978-1-4673-9211-2/16/$31.00 c©2016 IEEE

constraints on power consumption are now limiting their
performance growth. Lowering the chip supply voltage
(Vdd) is one of the most effective techniques for improv-
ing energy efficiency. Unfortunately, multiple technolog-
ical challenges are making supply voltage reduction very
difficult going forward.
One of these challenges is voltage noise caused by

abrupt fluctuations in current demand (δI/δt). These
fluctuations generally occur because of rapid changes
in workload intensity. If the voltage deviates too much
from its nominal value, it can lead to so-called “voltage
emergencies,” which can cause timing errors. To prevent
these emergencies, chip designers add voltage margins
that in modern processors can be as high as 20% [1, 2,
3, 4] wasting substantial amounts of energy.

Another important challenge is process variation caused
by extreme difficulties in manufacturing chips with very
small feature sizes. Variation affects crucial transistor
parameters such as threshold voltage (Vth) and effective
gate length (Leff) leading to heterogeneity in transistor
delay and power consumption. Process variation is also
generally mitigated by adding conservative guardbands
to accomodate the slowest regions of the chip, resulting
in additional energy costs.
Previous work has addressed voltage noise in CPUs

[2, 5, 6, 7, 8, 9, 10, 11, 12] and more recently GPUs
[3, 4, 13] with a variety of hardware and software-based
solutions that help reduce guardbands and save energy.
Process variation has also received significant attention
mainly targeting CPUs [14, 15, 16, 17, 18, 19, 20] and
to a lesser extent GPUs [21]. The combined effects of
process, voltage and temperature variation on single-core
CPUs were studied in [22].

Virtually all prior work on GPUs has addressed either
voltage noise or process variation independently. This
paper investigates their combined effects on modern
GPU architectures and presents concerted mitigation
solutions. One of the barriers to conducting research
in this space has been the difficulty of jointly model-
ing process variation and voltage noise. To make this
work possible, we developed a distributed power deliv-
ery model integrated with a process variation model
for GPUs. The model captures the effects of processor
activity on supply voltage as well as the combined effects

151
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

of Vdd and Vth variations on circuit delay distribution
at fine granularity within the chip.
We observed that GPUs are especially vulnerable

to voltage noise. Their highly parallel design leads to
workload execution patterns that are often coordinated
and highly variable, leading to large δI/δt. For instance
lower-power memory accesses are often followed by high-
power floating point instructions executed by all compute
lanes in a GPU core (SM). In addition, activity is often
synchronized across SMs, particularly after new kernels
are launched. These large δI/δt events cause large Vdd
droops that can lead to voltage emergencies.

Moreover, we observe that process variation can lead
to important core-to-core differences in sensitivity to
voltage noise. Since virtually all GPUs run all their SMs
at the same frequency, this results in some SMs having
lower effective margins than others, even though they
are design-identical. This means that any solution which
targets voltage noise and is applied indiscriminately to
all SMs will very likely waste energy.
In this paper we present a variation-aware, voltage

noise mitigation solution that addresses the challenge of
voltage noise in GPUs in an energy-efficient way. Our
solution relies on delay monitoring circuits (also called
critical path monitors) to detect when the voltage droops
to dangerous levels. When that happens, we deploy
a mechanism we call “core tunneling” that essentially
gates the clock of the entire SM to prevent errors. Since
no computation occurs while clock-gated, the core can
safely “tunnel” through a region of low voltage that
would be otherwise unsafe. This mechanism allows the
GPU to operate reliably with substantially lower voltage
margins. A power management governor dynamically
adjusts the supply voltage of the chip based on feedback
from the critical path monitors. The goal is to balance
the reduction in supply voltage with the performance
overhead of core tunneling.
To reduce the number of tunneling events we imple-

ment activity smoothing solutions aimed at reducing
δI/δt. We observed that some of the worst voltage
droops occur when new application kernels are launched.
Since launching a new kernel, which activates many
thread blocks, generally follows a low-power execution
phase, the resulting δI/δt can be very large. To address
this problem we developed a noise-aware thread block
scheduler that staggers the launching of new threads
across the GPU to smooth out δI/δt and reduce the
worst voltage droops.

Our solutions reduce voltage margins with little per-
formance impact, lowering energy consumption by an
average of 15%. In addition, we show core tunneling is
robust to the worst case voltage noise induced by a “volt-
age virus” that excites the chip’s resonance frequency.

In summary, this paper makes the following contribu-
tions:

First work to model the combined effects of voltage
noise and process variation in GPUs.

Core tuneling, a simple, process variation-aware
mechanism that reduces voltage margins with low
performance impact.

A noise-aware thread block scheduler that further
mitigates the largest observed voltage droops.
Demonstrates core tunneling robustness against
worst-case voltage virus.

The rest of this paper is organized as follows: Section
2 characterizes voltage noise and process variation in
GPU systems. Section 3 presents core tunneling, our
variation-aware noise mitigation solution. Section 4 de-
tails the variation and voltage noise modeling framework.
Sections 5 and 6 present the methodology and experi-
mental evaluation. Section 7 discusses related work and
section 8 concludes.

2. VOLTAGE NOISE AND VARIATION
A modeling infrastructure was developed to capture

the joint effects of voltage noise and process variation
on GPUs. It integrates the GPGPU-Sim [23] simulator
and the GPUWattch [24] power model with a detailed
power-delivery model that captures Vdd response to
δI/δt as a function of workload. The framework is also
integrated with the VARIUS process variation model [25].
This modeling infrastructure is described in detail in
Sections 4 and 5.

2.1 Voltage Noise
Runtime variation in workload intensity is a key factor

in voltage noise. Large and rapid changes in current
demand (δI/δt) from the various functional blocks across
the chip can lead to large droops in the supply voltage.
These effects are illustrated in Figure 1 using a section
of the breadth-first search (BFS) benchmark running on
a 16-SM GPU. The top graph shows total chip power
consumption and the bottom graph shows the lowest
Vdd across the GPU. The figure shows the execution of
two kernels that correspond to two loop iterations in
the algorithm. We observe that inside each kernel power
consumption is relatively constant, which corresponds
to low Vdd noise. However, when the kernels are first
scheduled for execution we see large power spikes as
multiple SMs become active simultaneously. This leads
to large voltage droops around 50, 400 and 800μs. Lower
voltage is associated with an increase in circuit delay
that can lead to timing failures.
Figure 2 shows the same data as a histogram of the

lowest voltage reached across the GPU in each cycle.
We can see a significant spread in voltages ranging from
1.1V to 1V, indicating that the worst droops bring the
Vdd at least 15% (150mV) below the nominal voltage of
1.15V. We also note that the Vdd distribution exhibits a
long and shallow tail towards lower voltages, indicating
that large droops occur rarely. However, static design
margins have to be large enough to tolerate the worst
droops the chip can experience, even though these are
generally rare events.

2.2 Process Variation
Process variation affects the speed of transistors across

the GPU die, making some regions slower than others.
In order to run the chip safely at its target frequency,
a higher supply voltage is needed to boost the slower

152
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

 50

 100

 150

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

P
ow

er
 (

W
)

Power

 1

 1.05

 1.1

0 100 200 300 400 500 600 700 800 900

V
ol

ta
ge

 (
V

)

Time (μs)

On Chip Vdd

Figure 1: Power consumption (top) and minimum die
Vdd (bottom) traces for the BFS algorithm.

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0
5

10
15

20
Ap

pl
ic

at
io

n
M

in
. D

is
tri

bu
tio

n
(%

)

Voltage(V)

Application Min. Vdd
Mean Vdd

Figure 2: Minimum voltage histogram for BFS.

sections. Figure 3 shows an outline of a GPU floorplan
showing the minimum voltages required by different re-
gions of the chip. This distribution models a typical Vth
variation of 5% σ/μ (standard deviation/chip average).
The regions shown in blue are more resilient and can
safely run at around 0.8V. The regions shown in red are
the most vulnerable, requiring a Vdd of 0.95-1V. SMs
that happen to be located in slower regions of the die
are more vulnerable and therefore require either a higher
supply voltage or lower chip frequency. This profile is
consistent with prior work that has characterized process
variation effects on GPUs [21].

2.3 Combined Effects of Noise and Variation
Design margins that account for both process variation

and voltage noise are very inefficient because they have
to consider the worst-case droop and the most vulnerable
SMs. Most of the time the GPU’s voltage will be well
above the lowest allowed. Moreover, even when large
voltage droops occur, only a few SMs will be affected.

Figure 4 illustrates the combined effects of voltage
noise and process variation on benchmark BFS. On the
same plot we show both the histogram of minimum

0.75

0.80

0.85

0.90

0.95

V
ol

ta
ge

 (
V

)

Strong SMs

Weak SMs

Figure 3: GPU floorplan overlaid on variation map
showing the lowest safe Vdd at which regions of the die
can operate safely.

0
5

10
15

20
C

or
e

M
in

. D
is

tri
bu

tio
n

(%
)

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0
5

10
15

20
Ap

pl
ic

at
io

n
M

in
. D

ist
rib

ut
io

n
(%

)

Voltage(V)

Application Min. Vdd
Core Min. Vdd

Figure 4: Histograms of minimum SM safe voltage (left)
and the lowest on-die Vdd reached while running BFS
(right).

voltages while running BFS (right-hand side of the fig-
ure) and the histogram representing the minimum safe
Vdd allowed by the SMs (left-hand side). The SM-level
distribution is the result of Monte Carlo simulations
of hundreds of dies and shows the percentage of SMs
that need a certain Vdd level to function correctly. All
threshold voltage distributions we generate have the
same average Vth in order to capture only within-die
variation and exclude die-to-die effects.

We can see that the most resilient SMs can safely
tolerate Vdds as low as 0.87V, while the most vulnerable
ones require at least 1V. The area highlighted in red
represents the opportunity for margin reduction in this
benchmark. Lowering the margin essentially implies
shifting the benchmark’s runtime Vdd distribution to-
wards the SM-level distribution. Margin reduction might
cause the two distributions to overlap, which means that
the voltage will occasionally drop below the minimum

153
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

0
5

10
15

20
C

or
e

M
in

. D
is

tri
bu

tio
n

(%
)

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0
5

10
15

20
Ap

pl
ic

at
io

n
M

in
. D

ist
rib

ut
io

n
(%

)

Voltage(V)

Application Min. Vdd
Core Min. Vdd

Figure 5: Histograms of minimum SM safe voltage (left)
and the lowest on-die Vdd reached while running CP
(right).

safe level for some SMs. To prevent errors, noise mit-
igation mechanisms will have to be in place, but they
will only need to be deployed on the most vulnerable
SMs. These generally account for about 10% of the total
number of SMs in a chip.
Figure 5 shows the same type of minimum voltage

histogram for the Coulombic Potential (CP) benchmark.
We notice a similar spread in voltages as in the case of
BFS. However, unlike BFS, CP exhibits almost no tail
at low Vdd, with the lowest voltages reached frequently
throughout the benchmark. We expect margin reduction
to be more difficult for CP since it’s effective voltage is
already low and lowering it further would push a large
number of cycles below the safe voltage.

3. CORE TUNNELING
We propose replacing the conservative static voltage

guardband with a lower dynamic margin, that adjusts to
the chip’s operating conditions. To ensure reliable oper-
ation under reduced margins, we developed a variation-
aware voltage noise mitigation solution. The system
includes noise detection capabilities, clock gating of se-
lect cores to avoid errors when noise is detected, and
a dynamic guardband management system for energy
optimization.

3.1 Voltage Noise Detection
The system relies on delay monitoring circuits called

Critical Path Monitors (CPMs) [26, 27] to detect when
voltage droops to dangerous levels. CPMs are simple
devices that measure signal propagation delay through
a chain of logic gates chosen to be representative of the
various logic paths inside a processor. When voltage
droops, propagation delay through the affected sections
of the chip increases. This change in delay is detected by
the CPM and can be used as a trigger for noise mitiga-
tion solutions. CPMs have been investigated extensively
in the research community and have been deployed com-
mercially in IBM POWER7 processors [26]. They can
detect voltage changes that are as small as 10mV within
a single clock cycle at multi-gigahertz frequencies [27].

GPU SM

Tunneling
controller

Clock
distribution

CPM
CPM

CPM

CPM

CPM

gate clock

Figure 6: Core tunneling hardware in a GPU SM.

Process variation makes the critical Vdd for each SM
different. However, since CPMs measure circuit delay
and not Vdd, there is no need to calibrate each CPM
individually to the characteristics of the SM. The CPMs
can be jointly calibrated to measure deviations from the
processor cycle time. Propagation delay is a function
of both Vdd and Vth. The CPMs will therefore capture
the joint effects of both process variation and voltage
noise. As an additional benefit, delay changes due to
temperature variation or aging should also be captured
by the CPMs.

3.2 Tunneling to Avoid Errors
When excessive noise is detected, the system deploys

a protection mechanism we call “core tunneling” that
gates the clock of the entire core to prevent timing errors.
Since all activity stops while the SM is clock-gated, the
core can safely “tunnel” through a region of low voltage
that would be otherwise unsafe.

Figure 6 shows a diagram of the tunneling hardware in
a GPU SM. Multiple CPMs are placed close to functional
units that consume the most power and will experience
the worst voltage droops. An SM-level tunneling con-
troller unit collects delay information from all CPMs
and uses the one showing the highest delay to decide
when clock gating should be activated.

Two thresholds are established to control the acti-
vation (tunnel entry) and deactivation (tunnel exit) of
clock gating. When the core tunneling controller de-
termines that the CPM delay exceeds the tunnel entry
threshold the SM is clock gated starting from the follow-
ing cycle. The tunnel entry threshold is a function of the
processor’s frequency and is chosen such that tunneling
is activated before the lowest safe Vdd can be breached
under worst case δI/δt. The SM will remain clock gated
as long as the measured delay is higher than the tunnel
exit threshold. When the delay from all CPMs drops
below that level, the controller disables clock-gating and
the SM resumes regular activity.

3.3 Runtime Voltage Management
In order to reduce voltage margins, a GPU-level power

governor implements a form of voltage speculation [28]
that dynamically adjusts Vdd at constant frequency to

154
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

Evaluate previous
interval statistics

Raise Vdd

Propose Vdd
increase

Propose Vdd
decrease

tunneled cycles > threshold

low margins high margins

Check history
table

Change Vdd No Vdd change

no
oscillation

potential
 oscillation

margins OK

Figure 7: The power governor’s control flow diagram for
Vdd management.

adapt to operating conditions. Since Vdd is adjusted
by small increments and the clock frequency remains
the same, there is no performance penalty associated
with these changes. The governor is invoked at regu-
lar intervals (e.g. every 5μs) to re-evaluate the GPU’s
supply voltage based on lightweight feedback from the
SMs. The governor algorithm runs on an on-chip micro-
controller similar to those used to manage power in the
Intel Itanium [29] or Core i7 [30] processors.

Figure 7 shows the control flow diagram that defines
the governor’s operation. At the end of each evaluation
interval the governor collects some lightweight informa-
tion from the tunneling controllers in each SM. The
governor uses this information to decide whether to
raise, lower or keep the supply voltage constant. The
goal is to optimize energy consumption by balancing low
Vdd margins (which saves power) with the frequency
and duration of core tunneling events (which reduces
performance penalty).

The governor examines the number of cycles each SM
has been tunneled over the previous interval. If any
SM has been tunneled for longer than a predetermined
threshold (e.g. >50% of the time) the governor raises
the supply voltage immediately by a ΔVdd. This is done
to reduce the number and duration of future tunnel-
ing events and ensure the performance impact of core
tunneling is minimal.
Each tunneling controller also monitors the amount

of available timing margin relative to the GPU’s cycle
time. This information is collected and evaluated by
the governor. If the timing margin of the slowest SM
is below a threshold, the governor proposes an increase
in Vdd. If, on the other hand, the margin is sufficiently
large, the governor proposes a decrease in Vdd by a
variable increment that is proportional to the available
margins. If margins are within the target delay range,
the Vdd will remain unchanged over the next interval.
Certain workload patterns could cause the governor

to oscillate between two neighboring voltage levels. To
avoid unnecessary voltage changes, the governor uses a

 1

 1.05

 1.1

 1.15

 0 2e-05 4e-05 6e-05 8e-05 0.0001 0.00012 0.00014

V
ol

ta
ge

 (
V

)

Time (s)

Phase A Phase B Phase C

Reference Input Vdd
On Chip Vdd

Tunnel Exit Threshold
Tunnel Entry Threshold

Figure 8: Dynamic Vdd adaptation and core tunneling
for a section of the WP benchmark.

history table to record previous Vdd states. If a change
in Vdd is the result of a low or high delay margin, the
governor checks the history table to ensure that proposed
Vdd level has not been recorded in the recent past (5-
10 evaluation intervals). If the proposed Vdd is found,
the potential for oscillation exists and the Vdd is not
changed; otherwise the proposed Vdd is put in place.
Voltage changes triggered by the tunneling threshold
indicate delay margins have been exceeded. As a result,
the voltage is raised immediately regardless of history,
as Figure 7 shows.

3.4 Core Tunneling Example
The process of dynamically adjusting the Vdd to work-

load characteristics is illustrated with a sample trace
from the Weather Prediction (WP) benchmark shown in
Figure 8. The figure shows the reference supply voltage
as it enters the GPU package at the level dictated by
the power governor, as well as the lowest on-chip Vdd for
one SM. The difference between the reference input Vdd
and the on-die Vdd is caused by the combined effects of
IR drop and voltage noise. The figure also shows the
voltage equivalents of the tunnel entry and tunnel exit
thresholds.
This example reveals three distinct phases that help

demonstrate the dynamic Vdd adaptation process:
In Phase A voltage noise is subdued because power

consumption is low as the benchmark is ramping up.
The SMs report that high timing margins are available.
As a result, the governor drops the Vdd in aggressive
30mV increments. At the end of phase A, the tunneling
controllers are reporting that available margins are on
taget. The governor stops lowering the Vdd and holds it
constant.
Phase B demonstrates how this system compensates

for an overall increase in power consumption. As the
workload intensity picks up and the power demand in-
creases, the Vdd droops as a result. This leads to the
SMs reporting reduced magins. To avoid excessive tun-

155
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

neling, the governor raises the Vdd by 5mV. This state
is then held for the remainder of phase B.
Phase C demonstrates how the system handles a sig-

nificant δI/δt event. At the beginning of phase C, a
rapid increase in power demand causes the supply volt-
age to drop rapidly before the governor has a chance to
intervene. The core tunneling controller of the most vul-
nerable SMs detect that their safety margins are about
to be exceeded. When the tunnel entry threshold is
breached the SMs are immediately tunneled to avoid
errors (light-red shaded area in Figure 8). Since activ-
ity is high and the Vdd remains below the tunnel exit
threshold for an extended period of time, the governor
has to raise the chip’s supply voltage to bring the SMs
back from tunneling.

3.5 Noise-Aware Thread Block Scheduler
Some of the largest δI/δt events observed in our ex-

periments are caused by the launching of application
kernels, which activate many thread blocks across the
GPU. Kernel launches are generally preceded by rela-
tively idle phases as the computation for the previous
kernel wraps up and data for the new kernel is being
transferred to the GPU. As this large group of threads
begins computation simultaneously, activity and power
consumption increase rapidly. The resulting δI/δt can
therefore be very large. This behavior has also been
observed in prior work by Leng et al. [3].

To reduce the impact of a new kernel launch on volt-
age noise, we develop a variation and noise-aware thread
block scheduler that takes the characteristics of the
power delivery network as well as SM vulnerability to
noise into account when making thread block assign-
ments. In order to smooth out the increase in activity,
the noise-aware block scheduler controls the SM activa-
tion by staggering the assignment of thread blocks to
SMs over a longer period of time. The scheduler will
first assign the maximum number of thread blocks to
the first SM in its queue which will allow that SM to
begin execution. Instead of immediately assigning work
to the other SMs, the thread block scheduler will wait
for a short period of time before assigning threads to
the next SM.
The block scheduler is also process variation-aware

and takes into account each SM’s vulnerability to noise.
The scheduler assigns work to the less vulnerable SMs
first because δI/δt is larger when the system is under
light load. This improves the performance of the voltage
speculation system because it allows it to more aggres-
sively lower Vdd when the weak SMs are not active.
Figure 9 shows the effect of a kernel launch from

benchmark BFS on supply voltage. The figure shows
the lowest Vdd across the chip and the number of active
thread blocks over time. The top plot shows the baseline
block scheduler. We can clearly see that as most thread
blocks become active over a short period of time, the
voltage droops rapidly by more than 80mV. The bottom
plot shows the noise-aware scheduler that staggers the
thread block launch over time. We can see that the
noise-aware scheduler is very effective at reducing δI/δt

 1

 1.05

 1.1

V
ol

ta
ge

 (
V

)

On Chip Vdd
Active thread block count

 1

 1.05

 1.1

402 403 404 405 406 407 408 409 410 411 412

V
ol

ta
ge

 (
V

)

Time (μs)

On Chip Vdd (Noise Aware Thread Block Scheduler)
Active thread block count

Figure 9: Baseline (top) and noise-aware (bottom)
thread block scheduler effects on supply voltage.

at kernel launch, resulting in a much smoother voltage
profile, with no significant droops.

4. JOINT MODELING OF VOLTAGE NOISE
AND PROCESS VARIATION

A modeling infrastructure that captures both voltage
noise and process variation in a joint simulation was
developed for this work. A distributed power delivery
model captures cycle-level voltage fluctuations at thou-
sands of points across the GPU. A process variation
model captures the distribution of threshold voltages
across the chip. The two models are integrated by com-
puting the distribution of circuit delays across the chip
as a function of both the Vdd and Vth distributions.

4.1 Power Delivery Modeling
A chip’s power delivery system consists of off-chip

and on-chip components. The off-chip network includes
a voltage regulator, capacitors used to stabilize supply
voltage, wires and other components. Our off-chip power
delivery model follows the design layout and component
characteristics of the Intel Xeon [31, 32], a system with a
similar thermal design power and chip size as the Fermi
GPU we model. The circuit layout is shown in Figure
10. Table 1 summarizes the component values.

On the chip, power is delivered through a set of pins
and C4 pads. These connect to a network of wires
that deliver the required voltage to the various chip
components. We model the on-chip power grid using a
distributed RLC network similar to those used by prior
work [5, 32]. Figure 11 shows the circuit layout of the
network. Wiring is modeled as an RL network with two
planes – one for the Vdd and one for the Vss – connected
by capacitors. Current sinks across the capacitors are
used to model the current drawn by the various func-
tional units, as in work by Herrell and Beker [33]. C4
bumps are placed uniformly throughout the entire chip.

The inputs to the model consist of current traces at cy-
cle granularity for each functional unit of the GPU. The

156
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Off-chip component of the power delivery
network.

Figure 11: Distributed model of the on-chip power de-
livery network.

model output is a trace of on-chip Vdd distributions at
cycle granularity. A circuit simulator such as SPICE can
be used to resolve the power delivery network for each
set of inputs. However, because the network is large and
it includes many inductive elements, a traditional cir-
cuit solver like SPICE would be prohibitively expensive,
especially given the need to simulate full benchmarks at
cycle granularity. As an alternative, we use a specialized
RLC solver based on the preconditioned Krylov-subspace
iterative method that we developed based on models by
Chen and Chen [34]. Our implementation is orders of
magnitude faster than SPICE, allowing the simulation
of longer benchmarks. We validate our optimized solver
against SPICE simulations.

4.2 Process Variation Integration
We use VARIUS [25] to model within-die process vari-

ation effects on threshold voltage (Vth). We generate
multiple Vth distribution maps of the GPU die. To
integrate the theshold voltage and supply voltage distri-
butions we use the Alpha Power Law to model circuit
delay as a function of Vdd and Vth (1).

Delay = C
Vdd

(Vdd − Vth)
α

(1)

Resistance Inductance Capacitance
Rpcb,s 100μΩ Lpcb 45pH
Rpkg 200μΩ Lpkg 6pH
Rpcbp 300μΩ Lpcbp 40pH Cpcbp 1256μF
Rpkgp 540μΩ Lpkgp 2.5pH Cpkgp 120μF
Rcav 150μΩ Lcav 20pH Ccav 1222μF
Rbump 10mΩ Lbump 50pH

Table 1: Off-chip network RLC parameter values.

Netlist
generator

RLC solver

GPGPUSim/
GPGPUWattch

VARIUS

Benchmarks

GPU
netlist

Process
variation

Core Tunneling Vdd trace

tunneling events

Vth

Figure 12: Overview diagram of the evaluation infras-
tructure.

where C and α are constants used to fit to a technology
node. The resulting delay distribution captures the
effects of process variation and voltage noise across the
die at clock cycle granularity.

Given a fixed clock frequency and a Vth distribution,
the model can also compute the lowest safe supply volt-
age in each point of the die. Figure 3 is an example of
such a distribution of minimum safe voltages for a given
target frequency. In this work we assume a 5% σ/μ Vth
variation.

5. EVALUATION METHODOLOGY
Our modeling frameworks includes a GPU simulator

with a modified power model, an RLC solver, netlist
generator and core tunneling framework. Figure 12
shows a high-level diagram of the interaction between
the various components of our infrastructure.

5.1 GPU Architecture
We use GPGPU-Sim [23] to model a mid-size GPGPU

architecture with 512 SIMD lanes (16 SMs with 32 com-
pute lanes each). The SM design and floorplan is inspired
by NVIDIA Fermi [35].

Each SM contains an L1 cache, read-only constant and
texture caches, and a software-managed shared memory
(scratch-pad). There are 32 standard integer/floating-
point ALUs (i.e. SPU) and 8 special functional units.
All the caches inside the SM are backed up by eight
shared L2 banks. The front-end contains instruction
fetch (fetch unit plus instruction cache), a highly-banked
register file with an associated operand-collector logic, a
thread scheduling and branching unit, instruction issue,
decode, and scoreboarding logic. Table 2 summarizes
the configuration parameters for this architecture.

To estimate per-unit dynamic and leakage power con-
sumption, we use GPUWattch [24] (with a modified
McPAT [37]) for functional units and other pipeline
internals. For the memory modules (e.g. caches and
register file), we use CACTI [38].
Significant changes are needed to existing tools to

accurately model cycle-by-cycle changes in power. Most
power models, including GPUWattch, compute energy
per operation. If the operation is multi-cycle, the energy
has to be spread over the entire duration of the opera-
tion. This will accurately model the power consumed

157
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

GPU Specs

SMs 16
L2 Cache 8 Banks, 128KB/bank
DRAM-C FR-FCFS, 4 MCs
Clock 1440 MHz

SM Specs

Core 1440 MHz, in-order pipeline
SIMD lanes SPU/SFU/LSU : 32/8/16
Const-Cache 8KB
Inst-Cache 2KB
L1 Data Cache 16KB
Shared memory 48 KB , 32 banks
Scheduling GTO [36]
Front-end Max IPC=1, mem. coalescing
Max Threads / SM 1536
Max Blocks / SM 8
Max Warps / SM 48
Reg-file 32684 × 32-bit, 16 banks

Table 2: GPU architecture parameter details.

Application Abbr. Inst. Count
AES Cryptography AES 28M

BFS Graph Traversal BFS 17M
Coulombic Potential CP 126M
LIBOR Monte Carlo LIB 907M
3D Laplace Solver LPS 82M
MUMmerGPU MUM 77M
Neural Network NN 68M
N-Queens Solver NQU 2M

Ray tracing RAY 71M
StoreGPU STO 134M

Weather Prediction WP 215M

Table 3: Benchmarks used in the evaluation.

in each cycle as the aggregate of multiple (potentially
multi-cycle) instructions. Leakage power is computed
separately as a function of unit area. A total power
trace is generated and converted to a piece-wise linear
current trace that is used as an input to the RLC solver.
The power delivery model relies on an RLC netlist

that is die and package specific. Generating this netlist
and assigning various parameters requires a detailed
floorplan of the GPU. We base our floorplan on the
NVIDIA Fermi die using publicly-available information
about component locations and relative sizes. Some
design choices are based on educated estimates.

5.2 Benchmarks
Table 3 summarizes the set of benchmarks we use.

These represent a diverse set of CUDA applications, cho-
sen from different suites (Rodinia, Parboil and NVIDIA
Compute SDK). The benchmarks are compiled with
NVIDIA C Compiler (nvcc) version 4.0.

6. EVALUATION
This section characterizes the effects of voltage noise

and process variation on the modeled GPU. We evaluate
the reduction in Vdd margins made possible by our core
tunneling framework and the power and energy savings
derived from the reduced voltage margins. Finally, we
evaluate the robustness of core tunneling under worst-
case noise conditions using a synthetic voltage “virus”
workload.

 1

 1.05

 1.1

 1.15

V
ol

ta
ge

 (
V

)

Reference input Vdd
On Chip Vdd

 1

 1.05

 1.1

 1.15

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

V
ol

ta
ge

 (
V

)

Time (s)

Reference Input Vdd
On Chip Vdd

Tunnel Exit Threshold
Tunnel Entry Threshold

Figure 13: Minimum Vdd trace of BFS for the baseline
(top) and the system with dynamic Vdd adjustment and
core tunneling (bottom).

6.1 Voltage Margin Reduction
Figure 13 shows the traces of reference input as well

as minimum on-die Vdd for benchmark BFS. The top
graph shows the baseline and the bottom one the core
tunneling system. For the baseline system we use a
static guardband of 10% added to the lowest safe Vdd
of the weakest SM. This brings the reference Vdd to a
fixed 1.15V.

For the core tunneling system (bottom) we can see the
dynamic adaptation in reference Vdd (dark blue line).
The continuous voltage adjustment keeps the on-die Vdd
closer to the minimun safe Vdd, reducing the effective
voltage margin. The voltage droops below the tunnel
entry threshold when δI/δt activity is high around the
50μs, 80μs and 750μs markers. The offending SMs are
briefly tunneled as a result during that time (light red
shaded areas). In all these cases the power governor
raises the reference Vdd to help the weak SMs exit from
their tunnels.

Figure 14 shows the histogram plots of the minimum
on-die Vdd in each cycle while running BFS. The top
plot is the baseline and the bottom represents the core
tunneling system. The plots also show the distribution
of the lowest safe SM voltages.

We can see that on the system with core tunneling the
runtime Vdd distribution has shifted to the left, closer
to the distribution of the lowest safe voltages. Moreover,
the low-Vdd tail is now much shorter, indicating that
the benchmark operates towards the energy-efficient
low-Vdd region most of the time. The slight overlap
between the two histograms represents the probability
of tunneling events for the SMs whose lowest safe Vdd
is higher than the tail of the runtime Vdd distribution.
Since the overlap is small we expect SM tunneling to be
relatively rare and performance impact small.
Figure 15 shows the traces of minimum Vdd across

the die for benchmark CP for the baseline system (top)
and the system with core tunneling (bottom). CP is

158
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0

5

10

15

20

Voltage(V)

Ap
pl

ic
at

io
n

M
in

. D
ist

rib
ut

io
n

(%
)

C
or

e
M

in
. D

ist
rib

ut
io

n
(%

)

Application Min. Vdd
Core Min. Vdd

Figure 14: Histograms of minimum Vdd for the BFS
benchmark for the baseline (top) and the core tunneling
system (bottom).

 1

 1.05

 1.1

 1.15

V
ol

ta
ge

 (
V

)

Reference input Vdd
On Chip Vdd

 1

 1.05

 1.1

 1.15

 0 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035

V
ol

ta
ge

 (
V

)

Time (s)

Reference Input Vdd
On Chip Vdd

Tunnel Exit Threshold
Tunnel Entry Threshold

Figure 15: Minimum Vdd trace for CP for the baseline
(top) and the system with core tunneling (bottom).

a compute intensive benchmark with very high power
consumption pulling the die’s Vdd low throughout its
execution. Given the benchmark’s high average power
consumption, normal activity leads to relatively large
δI/δt and high peak-to-peak voltage noise.

Figure 16 shows the histogram view for CP. The fact
that this benchmark, on average, runs much closer to
the lowest safe Vdd than BFS can be seen from the short
tail towards low voltages and tight distribution on the
top chart. As the bottom chart shows, core tunneling
lowers CP’s average voltage, shifting the on-chip Vdd
distribution to the left to an average that is close to that
of BFS. However, since CP’s voltage was already low,
the margin reduction is only about half of that achieved
for BFS.

6.2 Power and Energy Savings
Figure 17 shows the power savings resulting from the

lower Vdd margins enabled by core tunneling. We see
substantial power savings that are as high as 20% for
some benchmarks and average around 15%. Benchmarks

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.85 0.90 0.95 1.00 1.05 1.10 1.15

0

5

10

15

20

Voltage(V)

Ap
pl

ic
at

io
n

M
in

. D
ist

rib
ut

io
n

(%
)

C
or

e
M

in
. D

ist
rib

ut
io

n
(%

)

Application Min. Vdd
Core Min. Vdd

Figure 16: Histograms of minimum Vdd for the CP
benchmark for the baseline (top) and the core tunneling
system (bottom).

NQU AES RAY STO LPS CP BFS MUM NN LIB WP Mean

P
ow

er
 S

av
in

gs
(%

)

0
5

10
15

20

Figure 17: Power savings from dynamic Vdd adjustment
with core tunneling.

like CP, which consistently exhibit high power consump-
tion that pushes the Vdd close to the safety margin have
lower, but still non-trivial power savings of around 10%.

The performance overhead of core tunneling is shown
in Figure 18. On average, performance overhead is less
than 0.5%. The performance impact is kept low pri-
marily through the variation-aware aspect of our design.
Since only SMs that are margin-critical need to be tun-
neled, and tunneling is a relatively rare event, the overall
impact on runtime is minimal.
Theres is little variation in overhead across bench-

marks. The benchmarks with the largest performance
overhead, namely Raytrace (RAY), StoreGPU (STO)
and BFS are characterized by occasional activity coordi-
nation across SMs, which leads to large δI/δt. These are
so large and fast that the only way our system can han-
dle them is through extended tunneling of the sensitive
SMs. This brings a slightly higher performance impact.
CP is a notable case because it is a benchmark with

high power consumption and low average voltage, so
one might expect its overhead to be high. However,
the benchmark has a uniform behavior that allows the
power governor to quickly find an ideal Vdd level that can
be maintained throughout the execution with minimal

159
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

NQU AES RAY STO LPS CP BFS MUM NN LIB WP Mean

R
un

tim
e

O
ve

rh
ea

d
(%

)

0
2

4
6

8
10

Figure 18: Performance overhead of core tunneling.

NQU AES RAY STO LPS CP BFS MUM NN LIB WP Mean

E
ne

rg
y

S
av

in
gs

(%
)

0
5

10
15

20

Figure 19: Energy savings from dynamic Vdd adjustment
with core tunneling.

core tunneling activity. As a result, the performance
overhead of CP is close to zero.

The large overall power savings and low performance
overhead translate into substantial energy savings that
average about 15%, as Figure 19 shows.

6.3 Resilience to Resonating Voltage Virus
In order to test the robustness of core tunneling be-

yond the available benchmarks, we construct a worst
case “noise virus” consisting of a workload that induces
min-to-max oscillations in power, synchronized across
the GPU. This is achieved by activating all functional
units simultaneously across all SMs. In addition, we
tune the frequency of the oscillation to match the reso-
nance frequency of the die obtained from its impedance
profile. At resonance, the PDN’s impedance reaches its
peak, which translates into the worst voltage droops.
Note that this is an artificial power trace designed to
test the limits of the system, not an actual application.

The top of Figure 20 shows the response of the baseline
GPU to the voltage virus. We can see very large voltage
oscillations which indicate the power delivery network
is resonating. The supply voltage droops in excess of
200mV which would quickly render the chip unusable.

The bottom of Figure 20 shows the response of the
GPU to the same workload when core tunneling is en-

 0.95

 1

 1.05

 1.1

V
ol

ta
ge

 (
V

)

On Chip Vdd in Resonance (Baseline)

 0.95

 1

 1.05

 1.1

1.00 1.05 1.10 1.15 1.20 1.25

V
ol

ta
ge

 (
V

)

Time (μs)

On Chip Vdd in Resonance (Core Tunneling)
Tunnel Exit Threshold

Tunnel Entry Threshold

Figure 20: System response to the resonating workload.

Application Noise Reduction
AES 40mV
BFS 80mV
CP -
LIB 32mV
LPS 44mV
MUM 35mV
NN 34mV
NQU 50mV
RAY 30mV
STO -
WP 25mV

Table 4: Peak-to-peak noise reduction from the variation-
aware thread block scheduler.

abled. Core tunneling protects the system against the
virus in two ways: (1) it tunnels vulnerable SMs when
safety margins are exceeded (red shaded areas); (2) it
disrupts the resonant pattern because not all SMs are
tunneled at the same time and for the same duration
due to their variable sensitivities to low Vdd. Variable
tunneling times across the GPU lead to phase shifts that
disrupt the resonance.
As Figure 20 shows, the resonance disruption is so

effective that is allows all SMs to exit their tunnels
for some sections of the execution, in spite of the very
aggressive workload.

6.4 Variation-Aware Block Scheduler Effects
Our noise-aware thread block scheduler reduces the

magnitude of voltage droops associated with kernel
launches. This is achieved by staggering the assign-
ment of thread blocks to SMs, which lowers δI/δt. The
largest savings come from benchmarks like BFS which
have high initial IPC and experience the largest droops.
Workloads such as CP and STO have low initial IPC at
kernel launch and therefore benefit the least from the
staggered thread block launch.

Table 4 summarizes the amount of peak-to-peak volt-
age droop reduction for each benchmark.

160
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

7. RELATED WORK
Previous work [2, 5, 6, 7, 8, 9, 10, 11] has proposed sev-

eral hardware and software mechanisms for reducing the
slope of current changes (δI/δt), which reduces voltage
noise. This allows the use of smaller voltage guardbands,
saving substantial amounts of power. Most previous
work, however, has focused on single-core CPUs [5, 7, 8,
9, 10, 11] or low core-count systems [2, 5, 39]. Gupta et
al. [5] characterize within-die voltage variation using a
detailed distributed model of the on-chip power-supply
grid. Other work [12] has shown that, as the number of
cores in future CMPs increases, the effects of chip-wide
activity variation overshadow the effects of within-core
workload variability. Work by Kim et al. [39] presents a
rigorous testing framework for generating kernels that
stress the power delivery network and cause worst-case
voltage noise. They test and evaluate their framework
on real hardware. Recent work has measured voltage
noise on production IBM CPUs systems [27].
Voltage noise in GPUs has received relatively little

attention. Recent work by Leng et al. [4] has character-
ized voltage noise in multiple real GPU systems. They
found voltage noise to be a significant problem that
leads designers to add voltage margins that are as high
as 20%. Prior work by Leng et al. [3] has analyzed the
issue of voltage noise in simulation with new modeling
tools [13] designed for GPUs. They present insights
into controlling coordinated activity across SMs. They
also evaluate the effect of the large Register File present
in GPUs on voltage noise. They propose methods of
disrupting these patterns of activity across and within
SMs to mitigate voltage noise
Work by Lefurgy et al. [26] uses CPMs to measure

timing margins and adjust local DPLL (clock frequency)
at core granularity to avoid timing margin errors. Their
solution does not apply easily to GPUs that use a single
frequency (and clocking) domain for all SMs.
A significant body of work has examined techniques

to mitigate or tolerate process variation. These include
optimizations of register files and execution units [14],
data caches [15], pipeline balancing [16], intelligent floor-
planning [17], and core-to-core variation in power [18].
Other work proposed variation-aware thread scheduling
[20] to exploit core-to-core variability. Recent work has
examined the effects of process variation on GPUs [21].

The combined effects of process, voltage and temper-
ature variation on CPUs were studied by Gupta et al.
[22]. They present a local recovery mechanism for deal-
ing with noise-induced timing errors and a framework
for dynamically tuning clock frequency and supply volt-
age at fine spatial granularity to alleviate process and
temperature variation effects.
This is the first work we are aware of that jointly

models process variation and voltage noise and proposes
variation-aware noise mitigation solutions in GPUs.

8. CONCLUSION AND FUTURE WORK
This paper demonstrates the importance of accounting

for process variation when addressing voltage noise in
GPUs. We show that margins added to protect against

both process variation and voltage noise are too con-
servative. We present a new variation-aware framework
for reducing these margins by leveraging critical path
monitors for noise detection and core tunneling for noise
mitigation. Our solution takes advantage of typical GPU
workload variability to dynamically lower the Vdd and
reduce margins. We find an average of 15% power re-
duction with very little performance impact, resulting
in 15% savings in energy.

Core tunneling could benefit from compiler or system-
driven hints about phases of execution that are expected
to have high power consumption, especially if this in-
volves coordinated activity across many cores. This
could help the power governor preemptively raise the
voltage to avoid tunneling. Other solutions that achieve
voltage smoothing could reduce the probability of tun-
neling events and allow Vdd to be lowered further. We
hope this work will inspire further research into the joint
effects of voltage noise and process variation on modern
chips.

Acknowledgements
The authors would like to thank the anonymous review-
ers for their feedback. We also extend special thanks to
Vijay Janapa Reddi for suggestions on the camera ready
and the members of The Ohio State Computer Architec-
ture Research Lab for discussions and insights on this
work. This work was supported in part by the Defense
Advanced Research Projects Agency under the PER-
FECT (DARPA-BAA-12-24) program and the National
Science Foundation under grant CCF-1253933.

9. REFERENCES
[1] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie,

“Comparison of split-versus connected-core supplies in the
POWER6 microprocessor,” in International Solid-State
Circuits Conference (ISSCC), pp. 298–604, February 2007.

[2] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith,
G.-Y. Wei, and D. Brooks, “Voltage smoothing:
Characterizing and mitigating voltage noise in production
processors via software-guided thread scheduling,” in
International Symposium on Microarchitecture (MICRO),
pp. 77–88, December 2010.

[3] J. Leng, Y. Zu, and V. Reddi, “GPU voltage noise:
Characterization and hierarchical smoothing of spatial and
temporal voltage noise interference in GPU architectures,” in
International Symposium on High Performance Computer
Architecture (HPCA), pp. 161–173, February 2015.

[4] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J.
Reddi, “Safe limits on voltage reduction efficiency in GPUs:
A direct measurement approach,” in International
Symposium on Microarchitecture (MICRO), pp. 294–307,
2015.

[5] M. S. Gupta, J. Oatley, R. Joseph, G.-Y. Wei, and
D. Brooks, “Understanding voltage variations in chip
multiprocessors using a distributed power-delivery network,”
in Design Automation and Test in Europe (DATE),
pp. 624–629, April 2007.

[6] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and
D. Brooks, “Towards a software approach to mitigate voltage
emergencies,” in International Symposium on Low Power
Electronics and Design (ISLPED), pp. 123–128, August
2007.

161
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

[7] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and
D. Brooks, “DeCoR: A delayed commit and rollback
mechanism for handling inductive noise in processors,” in
International Symposium on High Performance Computer
Architecture (HPCA), pp. 381–392, February 2008.

[8] M. S. Gupta, V. Reddi, G. Holloway, G.-Y. Wei, and
D. Brooks, “An event-guided approach to reducing voltage
noise in processors,” in Design Automation and Test in
Europe (DATE), pp. 160–165, April 2009.

[9] R. Joseph, D. Brooks, and M. Martonosi, “Control
techniques to eliminate voltage emergencies in high
performance processors,” in International Symposium on
High Performance Computer Architecture (HPCA),
pp. 79–90, February 2003.

[10] M. D. Powell and T. N. Vijaykumar, “Pipeline muffling and
a priori current ramping: architectural techniques to reduce
high-frequency inductive noise,” in International Symposium
on Low Power Electronics and Design (ISLPED),
pp. 223–228, August 2003.

[11] V. J. Reddi, M. S. Gupta, G. Holloway, G. yeon Wei, M. D.
Smith, and D. Brooks, “Voltage emergency prediction: Using
signatures to reduce operating margins,” in International
Symposium on High Performance Computer Architecture
(HPCA), February 2009.

[12] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu,
“VRSync: Characterizing and eliminating
synchronization-induced voltage emergencies in many-core
processors,” in International Symposium on Computer
Architecture (ISCA), pp. 249–260, June 2012.

[13] J. Leng, Y. Zu, M. Rhu, M. Gupta, and V. J. Reddi,
“GPUVolt: Modeling and characterizing voltage noise in
GPU architectures,” in International Symposium on Low
Power Electronics and Design (ISLPED), pp. 141–146,
ACM, 2014.

[14] X. Liang and D. Brooks, “Mitigating the impact of process
variations on processor register files and execution units,” in
International Symposium on Microarchitecture (MICRO),
pp. 504–514, IEEE Computer Society, December 2006.

[15] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou,
“Yield-aware cache architectures,” in International
Symposium on Microarchitecture (MICRO), December 2006.

[16] A. Tiwari, S. R. Sarangi, and J. Torrellas, “ReCycle:
Pipeline adaptation to tolerate process variation,” in
International Symposium on Computer Architecture (ISCA),
June 2007.

[17] E. Humenay, D. Tarjan, and K. Skadron, “The impact of
systematic process variations on symmetrical performance in
chip multi-processors,” in Design Automation and Test in
Europe (DATE), April 2007.

[18] J. Donald and M. Martonosi, “Power efficiency for
variation-tolerant multicore processors,” in International
Symposium on Low Power Electronics and Design
(ISLPED), pp. 304–309, October 2006.

[19] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas,
“Mitigating parameter variation with dynamic fine-grain
body biasing,” in International Symposium on
Microarchitecture (MICRO), pp. 27–39, December 2007.

[20] R. Teodorescu and J. Torrellas, “Variation-Aware
Application Scheduling and Power Management for Chip
Multiprocessors,” in International Symposium on Computer
Architecture (ISCA), pp. 363–374, June 2008.

[21] P. Aguilera, J. Lee, A. Farmahini-Farahani, K. Morrow,
M. Schulte, and N. S. Kim, “Process variation-aware
workload partitioning algorithms for GPUs supporting
spatial-multitasking,” in Design Automation and Test in
Europe (DATE), pp. 1–6, March 2014.

[22] M. Gupta, J. Rivers, P. Bose, G.-Y. Wei, and D. Brooks,
“Tribeca: Design for PVT variations with local recovery and
fine-grained adaptation,” in International Symposium on
Microarchitecture (MICRO), pp. 435–446, December 2009.

[23] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA workloads using a detailed GPU
simulator,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
pp. 163–174, April 2009.

[24] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.
Kim, T. M. Aamodt, and V. J. Reddi, “GPUWattch:
Enabling energy optimizations in GPGPUs,” in International
Symposium on Computer Architecture (ISCA), June 2013.

[25] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano,
A. Tiwari, and J. Torrellas, “VARIUS: A Model of
Parameter Variation and Resulting Timing Errors for
Microarchitects,” IEEE Transactions on Semiconductor
Manufacturing, vol. 21, pp. 3–13, February 2008.

[26] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware,
B. Brock, J. A. Tierno, and J. B. Carter, “Active
management of timing guardband to save energy in
POWER7,” in International Symposium on
Microarchitecture (MICRO), pp. 1–11, December 2011.

[27] R. Bertran, A. Buyuktosunoglu, P. Bose, T. Slegel, G. Salem,
S. Carey, R. Rizzolo, and T. Strach, “Voltage noise in
multi-core processors: Empirical characterization and
optimization opportunities,” in International Symposium on
Microarchitecture (MICRO), pp. 368–380, December 2014.

[28] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge, “Razor: A low-power pipeline based on
circuit-level timing speculation,” in International Symposium
on Microarchitecture (MICRO), pp. 7–18, December 2003.

[29] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski,
M. Millican, W. H. Parks, and S. Naffziger, “Power and
temperature control on a 90-nm Itanium family processor,”
IEEE Journal of Solid-State Circuits, vol. 41, pp. 229–237,
January 2006.

[30] “Intel CoreTM i7 Processor.” http://www.intel.com.

[31] “Voltage regulator module (VRM) and enterprise voltage
regulator-down (EVRD) 11.1 design guidelines,” tech. rep.,
Intel Corp., September 2009.

[32] X. Zhang, T. Tong, S. Kanev, S. K. Lee, G.-Y. Wei, and
D. Brooks, “Characterizing and evaluating voltage noise in
multi-core near-threshold processors,” in International
Symposium on Low Power Electronics and Design
(ISLPED), pp. 82–87, 2013.

[33] D. Herrell and B. Beker, “Modeling of power distribution
systems for high-performance microprocessors,” IEEE
Transactions on Advanced Packaging, vol. 22, no. 3,
pp. 240–248, 1999.

[34] T.-H. Chen and C. Chen, “Efficient large-scale power grid
analysis based on preconditioned Krylov-subspace iterative
methods,” in Design Automation Conference (DAC),
pp. 559–562, June 2001.

[35] P. N. Glaskowsky, “NVIDIA’s Fermi: The first complete
GPU computing architecture,” September 2009. White
Paper.

[36] T. G. Rogers, M. O’Connor, and T. M. Aamodt,
“Cache-conscious wavefront scheduling,” in International
Symposium on Microarchitecture (MICRO), pp. 72–83,
December 2012.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and
Manycore Architectures,” in International Symposium on
Microarchitecture (MICRO), pp. 469–480, December 2009.

[38] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches,” Tech. Rep.
HPL-2009-85, HP Labs, 2009.

[39] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L.
Bircher, and M. S. S. Govindan, “AUDIT: Stress testing the
automatic way,” in International Symposium on
Microarchitecture (MICRO), pp. 212–223, December 2012.

162
Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:59:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

