
EmerGPU: Understanding and Mitigating
Resonance-Induced Voltage Noise

in GPU Architectures
Renji Thomas, Naser Sedaghati and Radu Teodorescu

Computer Science and Engineering
The Ohio State University

{thomasr, sedaghat, teodores}@cse.ohio-state.edu

Abstract—This paper characterizes voltage noise in GPU
architectures running general purpose workloads. In particular,
it focuses on resonance-induced voltage noise, which is caused by
workload-induced fluctuations in power demand that occur at
the resonance frequency of the chip’s power delivery network. A
distributed power delivery model at functional unit granularity
was developed and used to simulate supply voltage behavior
in a GPU system. We observe that resonance noise can lead
to very large voltage droops and protecting against these
droops by using voltage guardbands is costly and inefficient.
We propose EmerGPU, a solution that detects and mitigates
resonance noise in GPUs. EmerGPU monitors workload activity
levels and detects oscillations in power demand that approach
resonance frequencies. When such conditions are detected,
EmerGPU deploys a mitigation mechanism implemented in the
warp scheduler that disrupts the resonance activity pattern.
EmerGPU has no impact on performance and a small power
cost. Reducing voltage noise improves system reliability and
allows for smaller voltage margins to be used, reducing overall
energy consumption by an average of 21%.

I. INTRODUCTION

General-purpose graphics processing units (GPGPUs) are
emerging as high-performance and energy-efficient alterna-
tives to CPU-based computing. However, just like in the
case of CPUs, power consumption is becoming a significant
roadblock to the scaling of GPU performance. Lowering
the chip supply voltage (Vdd) is one of the most effective
techniques for improving energy efficiency. Unfortunately,
supply voltage scaling is limited by several technological
challenges. One of these challenges is voltage noise caused
by abrupt and/or periodic fluctuations in power demand.
These fluctuations are most often caused by variation in
chip activity levels as a function of workload. If the voltage
deviates too much from its nominal value, it can lead to so-
called “voltage emergencies,” which can cause timing and
memory retention errors. To prevent these emergencies, chip
designers add voltage margins that in modern processors can
be as high as 20% [12], [17], [19], [27] and are expected to

This work was supported in part by the Defense Advanced Research
Projects Agency under the PERFECT (DARPA-BAA-12-24) program and
the National Science Foundation under grant CCF-1253933.

increase in the future, leading to higher power consumption
than is desirable.

Previous work [7], [8], [9], [10], [15], [25], [26], [27]
has proposed several hardware and software mechanisms
for reducing the slope of current changes (I/t), which
reduces voltage noise. This allows the use of smaller volt-
age guardbands, saving substantial amounts of power. Most
previous work, however, has focused on single-core CPUs
[7], [8], [10], [15], [25], [26] or low core-count systems [7],
[16], [27]. Other previous work [22] has shown that, as the
number of cores in future CMPs increases, the effects of chip-
wide activity variation overshadow the effects of within-core
workload variability. Voltage noise has been measured on
production IBM systems by Bertran et al. [2] and on com-
mercial GPUs by Leng et al. [17]. Other work has analyzed
the issue of voltage noise [19] with new dedicated modeling
tools [20] and proposed mitigation techniques tailored to
GPU noise characteristics.

This paper focuses on characterizing voltage noise at
resonance frequencies in GPU architectures. Resonance noise
is caused by periodic fluctuations in curent demand that occur
at certain frequencies. Resonance noise can be especially
damaging to the chip’s reliability because it generally leads
to a pattern of very large and repeated voltage droops. This
behavior has been documented in general-purpose CPUs by
prior work [7], [25]. To our knowledge this is the first work to
specifically target resonance noise in GPUs. A detailed model
of the power delivery and distribution system for a GPU
was developed for this purpose. The model captures GPU
activity at functional unit granularity and generates spatial
and temporal distributions of supply voltage. Using this
model we simulate a range of workloads, from benchmark
applications to microbenchmarks purposefully designed to
induce resonant noise.

To address the chalenge of resonance noise we developed
EmerGPU, a framework implemented in each of the GPUs
streaming multiprocessors (SMs). The framework includes a
resonance-aware warp-level scheduler, designed to anticipate
workload activity patterns that could lead to voltage noise.
When such patterns are encountered, the scheduler disrupts

79978-1-5090-1953-3/16/$31.00 ©2016 IEEE

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

them by changing the order in which warps are selected or,
if needed, by injecting “dummy” active warps in the SM
pipeline for short periods of time. This solution has little
impact on performance and a small power cost. Reducing
voltage noise improves system reliability and requires smaller
voltage guardbands, reducing overall energy consumption by
an average of 21%.

Overall, this paper makes the following contributions:
• Characterizes resonance voltage noise in GPUs.
• Proposes a novel resonance-aware warp scheduling so-

lution designed to eliminate resonance noise.
The rest of this paper is organized as follows: Section II

describes the modeling infrastructure developed for this work.
Section III characterizes resonance-induced voltage noise in
GPU systems. Section IV details the EmerGPU design and
implementation. Sections V and VI present an experimental
evaluation. Section VII details related work and Section VIII
concludes.

II. VOLTAGE NOISE MODELING INFRASTRUCTURE

Understanding voltage noise in GPUs requires detailed
modeling of activity, power consumption and power delivery
infrastructure.

A. GPU Architecture

We model a GPGPU architecture with 128 SIMD lanes (4
SMs, each with 32 compute lanes) similar in size to Nvidia’s
GeForce 440 GPU. The SM design and floorplan is inspired
by NVIDIA Fermi [6].

Each SM contains an L1 cache, read-only constant and
texture caches, and a software-managed shared memory.
There are 32 standard integer/floating-point ALUs (i.e. SPU)
and 8 special functional units. To handle transfer of data
between SIMD datapath and different memory modules, the
memory subsystem is capable of handling 16 separate load-
store requests. All the caches inside the SM are backed up
by two shared L2 banks. The front-end contains instruction
fetch (fetch unit plus instruction cache), a highly-banked
register file with an associated operand-collector logic (for
read/write arbitration and management), a thread scheduling
and branching unit, instruction decode, and instruction issue
and scoreboarding logic. Table I lists configuration details for
this architecture.

B. Power Delivery Network Model

Voltage noise is a characteristic of the chip’s power de-
livery subsystem. Capturing its effects requires a detailed
model of the relevant components of this subsystem. A chip’s
power delivery infrastructure consists of both off-chip and on-
chip components. The off-chip network includes a voltage
regulator, capacitors used to stabilize supply voltage and
wires. Our off-chip power delivery model follows the design
layout and component characteristics of the Intel Pentium 4
packaging used in prior work [4], [7], [19], [20]. This is one

GPU Spec
SMs 4

L2 Cache 2 Banks, 128KB/bank (64/128/16)
DRAM-C FR-FCFS, 2 MCs, 2 banks/MC, each 8 byte/cycle
SM Freq. 1440 MHz

SM Spec
Core 1440 MHz, in-order pipeline

#SIMD lanes SPU/SFU/LSU : 32/8/16
Text-Cache 12KB (4/128/24)

Const-Cache 8KB (64/64/2)
Inst-Cache 2KB (4/128/4)

L1 Data Cache 16KB (32/128/4)
Shared memory 48 KB , 32 banks

Scheduling GTO scheduler from [28]
Front-end Max IPC=1, memory coalescing

Branch Divergence Post-Dominator (PDOM) Stack [5]
Max Threads / CTA 1024
Max Threads / SM 1536
Max CTAs / SM 8
Max Warps / SM 48

Reg-file 32684 ⇥ 32-bit registers, 16 banks
Regs / thread 63

TABLE I: Details of the GPU architecture we model (cache
structures are described in nsets/bsize/assoc).

Resistance Inductance Capacitance
R

pcb

94µ⌦ L
pcb

21pH C
pcb

240µF
R

pcbp 166µ⌦ L
pcbp 19.536µH C

pkg

26µF

R
pkg

1m⌦ L
pkg

120pH C
onDie

335nF
R

pkgp 541.5µ⌦ L
pkgp 5.61pH

R
grid

50m⌦ L
grid

5.6fH

TABLE II: RLC component values.

of the few commercial processors for which such data has
been published. Our GPU die size and thermal characteristics
are similar to that of the Pentium 4 and therefore we expect
the component parameters to be a good match. These values
are summarized in Table II. The circuit layout is shown
in Figure 1. The impedance of this distributed model is
characterized and noted to be very close to those obtained in
previous work [4], [7] for similar chip characteristics.

On the chip, power is delivered through a set of pins and
C4 pads. These connect to a network of wires that deliver the
required voltage to the various chip components. We model
the on-chip power grid using a distributed RLC network
similar to those used by prior work [7], [30]. Figure 2 shows

Vsup

Rpcb Lpcb

Rpcb Lpcb

Rpkg Lpkg

Rpkg Lpkg

Rpcb_p

Lpcb_p

Rpkg_p

Cpkg_p

Lpkg_p Rbump
Lbump

Cpcb_p

Fig. 1: Off-chip component of the power delivery network.

80

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

Vss Plane

VDD Plane
R GR

ID

L G
RI

D
C I S

IN
K

Fig. 2: Distributed model of the on-chip power delivery
network.

SM0

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

RF

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

SHARED MEM

SHARED MEM

FRONT

IC$

CC$

TEX$

SM2

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

RF

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

SHARED MEM

SHARED MEM

FRONT

IC$

CC$

TEX$

SM1

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

RF

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

SHARED MEM

SHARED MEM

FRONT

IC$

CC$

TEX$

SM3

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

RF

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

LD
/S

T
LD

/S
T

SHARED MEM

SHARED MEM

FRONT

IC$

CC$

TEX$

L2

IO

IO

MCMC

Fig. 3: Floorplan of the simulated GPU architecture.

the circuit layout of the network. Wiring is modeled as an
RL network with two planes – one for the Vdd and one for
the Vss – connected by capacitors. Current sinks across the
capacitors are used to model the current drawn by the various
functional units, as in work by Herrell and Beker [11]. C4
bumps are placed uniformly throughout the entire chip.

The power delivery model relies on an RLC netlist that is
die and package specific. Generating this netlist and assigning
various parameters requires a detailed floorplan of the GPU.
We base our floorplan on the Fermi die using publicly-
available information about component locations and relative
sizes. Some design choices are based on educated guesses.
Figure 3 shows the floorplan of the GPGPU that we used
in our simulations. There are 4 SMs along with a L2 in the
middle, memory control blocks along left and right sides and
IO blocks on top and bottom. Each SM consists of Shared
Memory, Instruction Cache, Constant Cache, Texture Cache,
Load Store units, SP units, Special Function units, Register
File and Front End.

The inputs to the model consist of current traces at cycle
granularity for each functional unit of the GPU. The model
output is a trace of on-chip Vdd distributions at cycle granular-
ity. A circuit simulator such as SPICE can be used to resolve
the power delivery network for each set of inputs. However,
because the network is large and it includes many inductive
elements, a traditional circuit solver like SPICE would be
prohibitively expensive, especially given the need to simulate
full benchmarks at cycle granularity. As an alternative, we
use a specialized RLC solver based on the preconditioned
Krylov-subspace iterative method that we developed based on
models by Chen and Chen [3]. Our implementation is orders
of magnitude faster than SPICE, allowing the simulation of
longer benchmarks. We validate our optimized solver against
SPICE simulations.

III. RESONANCE NOISE IN GPUS

Voltage stability is primarily influenced by changes in chip
activity dictated by workload behavior. Variation in activity
leads to changes in the amount of curent drawn by various
functional blocks across the chip. Large and/or rapid changes
in current demand (I/t) cause the supply voltage (Vdd) to
droop below nominal values.

A. Voltage Noise at Resonant Frequencies

In addition to the magnitude of the I/t, the pattern of
the current changes plays a crucial role in Vdd stability. In
particular, voltage droops can be significantly amplified by
periodic changes in I/t that occur at certain frequencies.
Vdd is a function of both current demand and the chip’s
impedance(Z), as follows: V = I ⇤ Z. Although the ideal
Z would be flat across its frequencies of operation, a number
of design constraints make that ideal hard to achieve. In
reality, the impedance of a chip varies significantly with the
frequency of I/t changes. Figure 4 shows the impedance as
a function of frequency for the GPU chip we model. We can
see that impedance varies by over 10⇥ across the spectrum of
frequencies we test (1MHz-1GHz). This means that the same
I/t events that occurs with a frequency corresponding to a
high Z will lead to much bigger droops than events that occur
with frequencies corresponding to low Zs. For this chip, a
peak is observed around 100 MHz indicating we can expect
higher droops for I/t events occurring at (or close to) that
frequency – generally refered-to as a “resonance frequency.”
This property has been well documented by prior work on
CPUs [2], [4], [7].

B. GPU Voltage Noise Characterization

1) CUDA Resonance Microkernel: In order to characterize
voltage noise behavior in GPUs, we constructed microkernels
designed to exhibit workload oscillation at (or around) the
resonance frequency. An example of such a microkernel (in
NVidia PTX assembly) is shown in Figure 5. The kernel
is composed of sequence of floating-point additions (e.g.

81

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

 1

 2

 3

 4

 5

 6

 7

 8

105 106 107 108 109

Im
pe

da
nc

e
(m

O
hm

)

Frequency (Hz)

Fig. 4: Impedance of the GPU power delivery network versus
the frequency of activity change.

Fig. 5: PTX micro-kernel demonstrating the activity pattern
to stress the resonance frequency.

“add.f32”) and approximate transcendental instructions (e.g.
“sin.approx.f32”). All the FP additions are executed by
normal ALUs while the sin/cos instructions will be issued to
special function units (SFUs). The kernel is carefully tuned to
alternate between high and low power phases. To maximize
power consumption and control the frequency of oscillation,
the kernel avoids unnecessary register-spilling, it includes
no RAW dependences between any two SP/SFU instructions
(avoiding stalls from the scoreboard logic), and avoids write-
back conflicts. The input operands of the instructions are
chosen to provide maximum freedom for the instruction issue
logic. The appropriate kernel dimensions are found after
trying several iterations of the same sequence and considering
the amount of SM resources used by each thread.

Using the frequency vs. impedance experiment illustrated
in Figure 4 we identify the resonance frequency that gen-
erates the highest impedance, which is about 100MHz. We
tune the rate of activity changes in the microkernel to match

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

C
om

po
ne

nt
 P

ow
er

 (W
)

SM0

SM1

SM2

SM3

L2,MC

 0.88

 0.92

 0.96

 1

 1.04

 1.08

 1.12

 1.16

 1.2

1600 1620 1640 1660 1680 1700 1720 1740 1760

Su
pp

ly
 V

ol
ta

ge
 (V

)

Cycle

On-Die Min. Voltage

Fig. 6: Power consumption of the resonance microkernel
running on the GPU and the effects on supply voltage noise.

this frequency. We run the microkernel trace through our
power delivery simulator and measure supply voltage across
the die. Note that the chip frequency is 1.4GHz so the period
of the workload oscillation is 14 GPU cycles. Figure 6 shows
the power trace of the resonant microkernel running on four
SMs of the GPU and the supply voltage measured on the die
location with the worst droop.

The microkernel activates both SP and SFU units simulta-
neously around cycle 1660. This raises chip power to close to
70W for a few cycles. The power drops for a brief period of
time followed by another parallel activation of both SP and
SFU units in each SM. This pattern repeats at a frequency that
is close to the resonance frequency of the die. This triggers
large swings of the supply voltage with the largest droops
exceeding 220mV, representing 20% of the nominal Vdd of
1.1V. This shows that certain execution patterns could indeed
lead to workload fluctuation at the resonance frequency,
which in turn can cause catastrophic voltage noise.

2) Worst-Case Chip-Wide Resonance: We also generated
a worse case scenario under which all units on chip switch
from leakage power to maximum power, fully synchronized
at the resonance frequency. Figure 7 shows the results of
this experiment. The top chart shows the oscillations in chip
power consumption over time. The low-to-high and high-to-
low power transitions occur over a single GPU cycle, which
generates the highest I/t that the chip could theoretically
experience. The bottom chart in the figure shows the supply
voltage. We can see that, as the power oscillates at the
resonance frequency, the amplitude of the voltage fluctuations
increases rapidly, with voltage droops reaching 280mV, or
about 25% of the nominal voltage.

We repeat the experiment with the same artificial trace
oscillating at different frequencies. Figure 8 shows the results
for a trace oscillating at 240MHz, which is safely outside
the resonance region. In this case, even through the I/t of

82

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

 10

 20

 30

 40

 50

Po
w

er
 (W

)

 0.7

 0.8

 0.9

 1

 1.1

1.50 u 1.55 u 1.60 u 1.65 u 1.70 u 1.75 u 1.80 u 1.85 u 1.90 u 1.95 u 2.00 u

Su
pp

ly
 V

ol
ta

ge
 (V

)

Time (s)

Fig. 7: Workload oscillation at resonance frequency and its
effects on supply voltage.

 10

 20

 30

 40

 50

Po
w

er
 (W

)

 0.7

 0.8

 0.9

 1

 1.1

1.50 u 1.55 u 1.60 u 1.65 u 1.70 u 1.75 u 1.80 u 1.85 u 1.90 u 1.95 u 2.00 u

Su
pp

ly
 V

ol
ta

ge
 (V

)

Time (s)

Fig. 8: Workload oscillation outside the resonance frequency
and its effects on supply voltage.

this workload is identical to the resonance case, the voltage
droops are significantly lower at around 100mV or less than
10% of the nominal Vdd. This shows that resonance noise,
when present in the workload, dwarfs the effects of even the
worst non-resonating I/t.

IV. MITIGATING RESONANCE NOISE IN GPUS

To mitigate noise effects we designed EmerGPU, a simple
and robust mechanism implemented at SM level. Our solu-
tion detects activity patterns that oscillate at the resonance
frequency of the chip. When such activity is encountered,
EmerGPU disrupts the resonant activity through careful
rescheduling of warps and artificial load injection.

 0

 1

 2

 3

 4

 5

 6

 7

10
5

10
6

10
7

10
8

10
9

Im
p
e
d
a
n
c
e
 (

m
O

h
m

s
)

Frequency (Hz)

On-Die Impedance Plot

resonance
frequency

shifting to
low frequency

shifting to
high frequency

Fig. 9: Eliminating resonance by shifting the workload os-
cillation to either lower or higher frequencies.

resonance period

non-resonance
period

injected
load

original
workload

resulting
workload

time

po
w

er

Fig. 10: Eliminating resonance by shifting the workloads
with high duty cycles to low frequency through instruction
scheduling or load injection.

A. Resonance Disruption Through Frequency Shifting

EmerGPU shifts the workload oscillation pattern to fre-
quencies that are either higher or lower than the damaging
resonance frequencies. The desired effect of our resonance
mitigation solution is illustrated in Figure 9.

The choice of whether to shift a potentially resonant
activity pattern towards a higher or a lower frequency is
made based on the duty cycle observed in the workload. If
the duty cycle of the resonant signal is high, i.e. the power
is high for most of the cycle period, the signal is shifted
towards lower frequencies. Figure 10 shows an example of
how this is accomplished. The process involves altering the
workload such that some low-power instructions are replaced
by high power ones. This can be accomplished by the warp
scheduler. If no high power warps/instructions are available,
artificial load is injected. The resulting signal has longer
periods corresponding to frequencies that are lower that the
resonance region.

If, on the other hand, the duty cycle of the resonant
signal is low, i.e. the power is low for most of the cycle
period, the signal is shifted towards a higher frequency, as

83

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

resonance period

non-resonance
period

injected
load

original
workload

resulting
workload

time

po
w

er

Fig. 11: Eliminating resonance by shifting the workloads with
low duty cycles to high frequency.

shown in Figure 11. This is done to minimize the power
overhead introduced by the injected load. Since extending the
low duty-cycle signal to longer non-resonant periods would
require significant amounts of injected power, we opt instead
for shorter periods which require less power. The process
involves scheduling or injecting a high frequency sequence
of instructions into the original workload, as illustrated by
the dotted line in Figure 11. The resulting signal of the new
workload has a frequency of oscillation that is higher than
the resonance frequency.

B. EmerGPU Design and Implementation

EmerGPU is implemented in the issue and execute stages
of each SM of the GPU. Figure 12 highlights the microar-
chitectural modifications/additions made to the SM pipeline.
EmerGPU consists primarily of two components: the Reso-
nance Monitor and the Resonance-Aware Warp Scheduler.

1) Resonance Monitor: The Resonance Monitor is a
hardware unit that looks for sequences of instructions that
oscillate between high and low power at frequencies close to
resonance. To detect these cases, the unit examines the active
mask of the warp scheduled for execution in the current cycle
and first classifies the warp as high or low power. A warp
is considered high-power when its active lane count is above
a certain threshold, and low-power otherwise. If the warp is
determined to be high-power, the current cycle is marked as
a high-activity cycle.

When execution transitions from a low-activity to a high-
activity phase, a period counter is started. If the next low-
to-high transition occurs within a number of cycles that is
lower than the resonance period of the chip, the resonance
monitor enteres “resonance mitigation mode” and stays in
this mode as long as the oscillation period is within the
resonance region. A duty cycle counter records the ratio of
high vs. low activity cycles. Depending on the duty-cycle,
the resonance monitor chooses either high-frequency or low-
frequency mitigation.

In high-frequency mode (which corresponds to a low
duty-cycle), the monitor disrupts the resonant activity by

Fig. 12: EmerGPU changes to the baseline SM microarchi-
tecture (highlighted in dark green).

shifting it towards higher-frequencies as in Figure 11. This is
accomplished by raising a warp injection flag in short bursts
of only a few cycles. In low-frequency mode, the monitor
raises the warp injection signal immediately in order to shift
the activity pattern to a lower-frequency as in Figure 10.

2) Warp Power Classifier: When the resonance-monitor
detects a region of the workload where warp injection is
needed to disrupt resonance, a Warp Classifier unit is ac-
tivated to identify high power instructions/warps in the list
of available instructions. The classifier relies on the active
mask (coming from the SIMT Stack) and the instruction
type (from the instruction buffer) to make this determination.
If the instruction is of compute type (ALU or SFU) and
the number of active lanes is greater than a threshold (e.g.
32 lanes for ALU or 8 lanes for SFU), the instruction is
considered high power and can be used to disrupt resonance.
If the instruction is of memory type (load, store, mem-barrier,
etc), it is classified as low power.

Given N warps in the list of active warps, the Warp Classi-
fier generates an N-bit vector where element k determines if
the kth warp is high (1) or low-power (0). This mask will be
used by the selection logic to select high-power warps when
the SM is in “resonance mitigation mode.”

84

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

3) Resonance-Aware Warp Selection: A Warp Selector
unit is responsable for managing the warp injection process
when the “resonance mitigation mode” is active. If the warp
injection flag is set, the Warp Selector looks for a candidate
in the sub-list of high-power warps. If one is found, it is
immediately dispatched for execution. Otherwise, the Warp
Selector examines the available low-power warps. If a ready
low-power warp exists, a power boost flag is set for that
warp and it is then dispatched for execution. The power
boost flag will signal to the execution unit to boost its power
consumption (e.g. by activating the lanes that are masked off)
when this warp arrives for execution. The warp injection flag
is attached to all warps dispatched when that mode is active.
This will indicate to the execution unit to take additional
measures if these warps are stalled due to dependencies.

If the Warp Selector cannot find any warps that are ready
for dispatch and the warp injection flag is still set, the selector
will choose a “dummy” warp which contains special high
power NOP instructions. These instructions have no effect
on the execution but are designed to activate functional units
to bring the power consumption up as requited during warp
injection cycles.

4) Resonance-Aware Warp Execution: At the execute
stage of the pipeline EmerGPU examines the flags set at
dispatch. If a warp is marked with power boost, indicating
it may have insufficient power, the clock gating signal of
inactive lanes is canceled in order to increase power con-
sumption. If the warp is marked as dummy, clock gating is
also disabled for all lanes.

If an instruction with the warp injection flag set is stalled
at register access (e.g. due to a bank conflict), clock gating
will be disabled for the current cycle as a substitute for the
stalled warp.

C. Hardware Overhead
EmerGPU requires few modifications to the pipeline mi-

croarchitecture. In the instruction buffer, each instruction will
have an additional 2-bit entry to specify its type (0=mem,
1=ALU, 2=SFU). For ”dummy” warps, we dedicate a single-
entry stack (no divergence, so one entry is sufficient) which
contains the active mask and PC. The Resonance Monitor
requires one counter for the period and two counters to keep
track of high- and low-power phases of activity, plus compare
logic to detect the power level of a given mask (by counting
the number of 1s). The Power Classifier unit requires a
compare (bit-count) logic for warp power classification. The
Warp Selector logic only needs logic to check warp readiness
and power levels.

V. METHODOLOGY

Our modeling framework includes a GPU simulator used
to generate activity and power traces and a detailed power
delivery model, coupled with the simulator, that models the
runtime Vdd behavior as a function of workload. The Figure
13 shows an overview of our evaluation infrastructure.

Circuit Simulator

Fig. 13: Overview diagram of the evaluation infrastructure.

Application Abbr. #Insts
AES Cryptography AES 28M

BFS Graph Traversal BFS 17M
Coulombic Potential CP 126M
LIBOR Monte Carlo LIB 907M
3D Laplace Solver LPS 82M

MUMmerGPU MUM 77M
Neural Network NN 68M
N-Queens Solver NQU 2M

Ray tracing RAY 71M
StoreGPU STO 134M

Weather Prediction WP 215M

TABLE III: Benchmarks used in the evaluation.

CUDA benchmarks are compiled with NVIDIA C Com-
piler (nvcc) version 4.0. The generated binary is run on
GPGPU-Sim (version 3.2.1 [1]) that simulates our baseline
architecture. As an output, the simulator is modified to gen-
erate a detailed cycle-accurate trace of activity for different
SM- and GPU-level components.

To estimate per-unit dynamic and leakage power consump-
tion, we use GPUWattch [18] (with a modified McPAT [21])
for functional units and other pipeline internals (e.g. memory
coalescer). For the memory modules (e.g. caches and register
file), we use CACTI version 6.0 [23]. A total power trace is
generated and converted to piece-wise linear current trace
that is used as an input for the chip power delivery model
detailed in Section II.

Table III shows the set of benchmarks we use to evaluate
EmerGPU. These represent a diverse set of CUDA applica-
tions, broadly chosen from different suites (Rodinia, Parboil
and NVIDIA Compute SDK).

85

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

SM0

SM1

SM2

SM3

S
p

ec
tr

al
 D

en
si

ty
 d

B
/H

z

-50

-55

-60

-65

-70

-75

-80

-85

-90

107 108 109

Frequency (Hz)

CP

Fig. 14: Power spectral density analysis for baseline CP.

VI. EVALUATION

In this section we characterize resonance noise in GPU
benchmarks and evaluate the effectiveness of EmerGPU in
reducing that noise. We also present the power and energy
savings derived from the reduction in voltage margins en-
abled by the noise mitigation.

A. Resonance Noise in GPU Benchmarks

Isolating resonance noise from other effects in real bench-
marks is challenging because voltage fluctuations are caused
by I/t oscillations at a broad range of frequencies. While
resonance noise does dominate other effects when present
in the workload, it effects can be hard to visualize. In
order to isolate resonance noise effects in our benchmarks
we run a spectral density analysis on the power traces to
measure energy in the resonance range. The power spectral
density is obtained by running a fast Fourier transform (FFT)
on the power trace in order to isolate the energy in each
sub-frequency component. High energy in the resonance
frequencies indicates that the benchmark will experience
high resonance noise. Figure 14 shows the results of the
power spectral density analysis for benchmark CP. The figure
plots power spectral density in dB/Hz for each frequency
subcomponent ranging from 10MHz to 1GHz.

Recall the resonance frequency for our chip is around
100MHz (area highlighted in red on the plot). As we can see
from Figure 14, benchmark CP exhibits very high energy at
the top end of its resonance band relative to other frequencies.
This indicates that CP experiences significant resonance-
induced noise.

Other benchmarks such as STO also exhibit high energy
in the resonance region (Figure 15), although not quite
as high as CP. Not all benchmarks however display this
characteristic. For instance, BFS reveals a relatively flat

SM0

SM1

SM2

SM3

S
p

ec
tr

al
 D

en
si

ty
 d

B
/H

z

-50

-55

-60

-65

-70

-75

-80

-85

-90

107 108 109

Frequency (Hz)

STO

Fig. 15: Power spectral density analysis for baseline STO.

SM0

SM1

SM2

SM3

S
p

ec
tr

al
 D

en
si

ty
 d

B
/H

z
-50

-55

-60

-65

-70

-75

-80

-85

-90

107 108 109

Frequency (Hz)

BFS

Fig. 16: Power spectral density analysis for baseline BFS.

energy distribution across its frequency spectrum (Figure 16).
This makes it less likely that it will suffer from resonance
induced noise.

Figure 17 shows an example of a resonating section of
benchmark AES. The top chart shows the supply voltage in
the baseline system, with the resonating section highlighted.
The bottom chart shows the supply voltage for the same
benchmark section running on the EmerGPU system. We can
see that resonance is completely eliminated.

B. Resonance Mitigation with EmerGPU

The goal of EmerGPU is to disrupt resonance frequencies
by shifting their energy to either low or high frequencies. To
measure how effective EmerGPU is at achieving this goal
we again use spectral density analysis. Figure 18 shows the

86

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

0.
95

1.
00

1.
05

1.
10

3500 3600 3700 3800 3900 4000

0.
95

1.
00

1.
05

1.
10Vo

lta
ge

 (V
)

Cycle

AES Baseline
AES EmerGPU

Fig. 17: Example of resonance noise in AES baseline (top)
and the mitigation effects of EmerGPU (bottom).

Application Energy Reduction
RAY −3dB
NQU −12dB
NN −7dB
WP −5dB
STO −4dB

MUM −3dB
LPS −4dB
CP −13dB

BFS −3dB
AES −7dB
LIB −10dB

TABLE IV: Reduction in energy at resonance frequencies
with EmerGPU.

power spectral density for CP running on the baseline system
(a) and with EmerGPU (b). We can see that EmerGPU is
very effective at removing the energy peak at resonance.
The reduction in energy in that region is about -13dB or
about 20⇥ lower energy relative to the baseline system. This
effectively eliminates resonance noise from CP.

Table IV summarizes the reduction in energy in the reso-
nance frequencies for all the benchmarks. Energy reduction
varies greatly from benchmark to benchmark but is at least
50% (-3dB) and can be as high as 20⇥ as in the case of
CP. Some benchmarks experience a smaller energy reduction
because they don’t have much energy in the resonance region.

C. Voltage Margin Reduction

EmerGPU virtually eliminates activity-induced resonance
noise. This allows a substantial reduction of the large voltage
margins that would otherwise be required to ensure reliable
execution. To measure the reduction in voltage margins
we measure maximum voltage droop for the worst case
resonance (load oscillation at 100MHz, 50% duty cycle).
This is the worse-case guardband that would be required
for this system. We determine this guardband to be 280mV.
This is consistent with prior work [12], [27]. We run the
same experiment with EmerGPU and measure the worst-

case droop. We determine the guardband for EmerGPU to
be 120mV. As a result, EmerGPU reduces the guardband
required for this chip by a very significant 160mV.

D. Power Savings

The margin reduction enabled by EmerGPU leads to sub-
stantial power savings. Figure 19 shows the power for each
benchmark relative to the baseline system. The top bar in
the stack (in red) represents the additional power introduced
by EmerGPU in warp injection mode. It accounts for the
hardware overhead, the cost of “dummy” warp injection, and
the boosting of warps with insufficient power. This overhead
averages 8% over the baseline. However, the reduction in
voltage margins enabled by EmerGPU more that makes up
for the power overhead. Overall EmerGPU reduces power
consumption by 21% on average.

EmerGPU has virtually no performance overhead. Since it
injects “dummy” warps when the pipeline is stalled, perfor-
mance is not impacted. EmerGPU does occasionally change
the warp execution order set by the baseline scheduler. This
results in marginal slowdowns for some applications and ac-
tually speeds up others. On average EmerGPU’s performance
is within less than 0.25% of the baseline.

VII. RELATED WORK

Extensive prior research exists on the topic of voltage
noise in CPUs. Reddi et al. [26] employ heuristics and a
learning mechanism to predict voltage emergencies from
architectural events. When an emergency is predicted, ex-
ecution is throttled, reducing the slope of current changes.
Gupta et al. [10] proposed an event guided adaptive voltage
emergency avoidance scheme. Recurring emergencies are
avoided by initiating various operations such as pseudo-
nops, prefetching, and a hardware throttling mechanism on
events that cause emergencies. Gupta et al. also proposed
DeCoR [8], a checkpoint/rollback solution that allows voltage
emergencies but delays the commit of instructions until they
are considered safe. A low voltage sensor, of known delay,
signals that an emergency is likely to have occurred and the
pipeline is flushed and rolled back to a safe state.

Powell and Vijaykumar [25] proposed two approaches for
reducing high-frequency inductive noise caused by processor
pipeline activity. Pipeline muffling reduces the number of
functional units switching at any given time by controlling
instruction issue. A priori current ramping slowly ramps
up the current of functional units before they are utilized
in order to reduce the amplitude of the current surge. A
software approach to mitigating voltage emergencies was
proposed by Gupta et al. in [9]. They observe that a few
loops in SPEC benchmarks are responsible for the majority
of emergencies in superscalar processors. Their solution
involves a set of compiler-based optimizations that reduce or
eliminate architectural events likely to lead to emergencies
such as cache or TLB misses and other long-latency stalls.

87

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

SM0

a) b)

-50

-55

-60

-65

-70

-75

-80

-85

-90

-50

-55

-60

-65

-70

-75

-80

-85

-90

-13dB

SM1
SM2
SM3

SM0
SM1
SM2
SM3

S
p
ec

tr
a l

 D
en

si
ty

 d
B

/H
z

S
p
ec

tr
a l

 D
en

si
ty

 d
B

/H
z

CP CP-EmerGPU

107 108 109

Frequency (Hz)
107 108 109

Frequency (Hz)

Fig. 18: Power spectral density analysis for CP running on the baseline system (a) and with EmerGPU (b).

RAY NQU NN WP STO MUM LPS CP BFS AES LIB Average
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

EmerGPU Overhead

Fig. 19: Power consumption with EmerGPU for each bench-
mark relative to the baseline.

A few previous studies have examined voltage emergencies
in multicore chips. Gupta et al. [7] characterize within-die
voltage variation using a detailed distributed model of the
on-chip power-supply grid. Reddi et al. [27] evaluate voltage
droops in a commercial dual-core microprocessor. They
propose co-scheduling threads with complementary noise
behavior, to reduce voltage droops. Miller et al. examine
synchronization-induced voltage emergencies in CMPs with
large number of cores [22]. They find that, as the number
of cores increases, the effects of chip-wide activity variation
such as that introduced by barrier synchronization leads to
high I/t and voltage emergencies. They propose changes
to synchronization libraries that reduce I/t to avoid emer-
gencies. Recent work by Kim et al. [16] presents a rigorous
testing framework for generating kernels that stress the power
delivery network and cause worse-case voltage noise. They
test and evaluate their framework on real hardware.

Voltage noise in GPUs has received relatively little at-
tention. Leng et al. [19], [20] studied available margins in
modern GPUs and also characterized the causes of typical

I/t events in GPU workloads. They present solutions
for controlling coordinated activity across SMs. They also
evaluate the effect of the large Register File present in GPUs
on voltage noise. They propose methods of disrupting these
patterns of activity across SMs and within an SM to mitigate
voltage noise. Recent work by Thomas et al. [29] proposed
the joint mitigation of voltage noise and process variation
using a technique called “Core Tunneling” that clock gates
individual SMs when voltage drops below a safe threshold.

To the best of our knowledge this is the first work to focus
on characterizing and mitigating resonance noise in GPUs.

Various performance-centric warp scheduling techniques
for GPUs have been developed in prior work. Their goal is
generally to more efficiently hide the latency of the memory
subsystem. Examples include the two-level warp scheduler
for improving memory latency developed by Narasiman et
al. [24]), cache-conscious wavefront scheduling for cache-
sensitive applications by Rogers et al. [28], warp scheduling
for reducing cache or DRAM contention by Jog et al.
[13], or scheduling techniques to improve efficiency of the
prefetchers by Jog et al. [14]. Our work employs noise-
aware warp scheduling to eliminate resonance noise without
impacting performance.

VIII. CONCLUSION

This paper characterized resonance noise in a GPU ar-
chitecture and showed that workload variability at resonant
frequencies can lead to very large voltage droops. We pro-
posed EmerGPU, a technique that disrupts resonance activity
patterns, reducing voltage droops and allowing lower voltage
guardbands. EmerGPU reduces power consumption by an
average of 21% with no performance overhead. We hope this
work will also serve as a foundation for more research on
resonance noise in GPU environments.

88

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), April 2009, pp. 163–174.

[2] R. Bertran, A. Buyuktosunoglu, P. Bose, T. Slegel, G. Salem, S. Carey,
R. Rizzolo, and T. Strach, “Voltage noise in multi-core processors:
Empirical characterization and optimization opportunities,” in Interna-
tional Symposium on Microarchitecture (MICRO), December 2014, pp.
368–380.

[3] T.-H. Chen and C. Chen, “Efficient large-scale power grid analysis
based on preconditioned Krylov-subspace iterative methods,” in Design
Automation Conference, 2001. Proceedings, 2001, pp. 559–562.

[4] W. El-Essawy and D. H. Albonesi, “Mitigating inductive noise in SMT
processors,” in International Symposium on Low Power Electronics and
Design (ISLPED), August 2004, pp. 332–337.

[5] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient GPU control flow,” in
International Symposium on Microarchitecture (MICRO), December
2007, pp. 407–420.

[6] P. N. Glaskowsky, “NVIDIA’s Fermi: The first complete GPU com-
puting architecture,” September 2009, White Paper.

[7] M. S. Gupta, J. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks, “Under-
standing voltage variations in chip multiprocessors using a distributed
power-delivery network,” in Design Automation and Test in Europe
(DATE), April 2007, pp. 624–629.

[8] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks,
“DeCoR: A delayed commit and rollback mechanism for handling
inductive noise in processors,” in International Symposium on High
Performance Computer Architecture (HPCA), February 2008, pp. 381–
392.

[9] ——, “Towards a software approach to mitigate voltage emergencies,”
in International Symposium on Low Power Electronics and Design
(ISLPED), August 2007, pp. 123–128.

[10] M. S. Gupta, V. Reddi, G. Holloway, G.-Y. Wei, and D. Brooks, “An
event-guided approach to reducing voltage noise in processors,” in
Design Automation and Test in Europe (DATE), April 2009, pp. 160–
165.

[11] D. Herrell and B. Beker, “Modeling of power distribution systems for
high-performance microprocessors,” IEEE Transactions on Advanced
Packaging, vol. 22, no. 3, pp. 240–248, 1999.

[12] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie, “Com-
parison of split-versus connected-core supplies in the POWER6 micro-
processor,” in International Solid-State Circuits Conference (ISSCC),
February 2007, pp. 298–604.

[13] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative
thread array aware scheduling techniques for improving GPGPU
performance,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2013,
pp. 395–406.

[14] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated scheduling and prefetching for GPGPUs,”
in International Symposium on Computer Architecture (ISCA), 2013,
pp. 332–343.

[15] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to
eliminate voltage emergencies in high performance processors,” in
International Symposium on High Performance Computer Architecture
(HPCA), February 2003, pp. 79–90.

[16] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L. Bircher,
and M. S. S. Govindan, “AUDIT: Stress testing the automatic way,”
in International Symposium on Microarchitecture (MICRO), December
2012, pp. 212–223.

[17] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi, “Safe
limits on voltage reduction efficiency in GPUs: A direct measurement
approach,” in International Symposium on Microarchitecture (MICRO),
2015, pp. 294–307.

[18] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling energy optimizations
in GPGPUs,” in International Symposium on Computer Architecture
(ISCA), June 2013.

[19] J. Leng, Y. Zu, and V. Reddi, “GPU voltage noise: Characterization
and hierarchical smoothing of spatial and temporal voltage noise
interference in GPU architectures,” in International Symposium on
High Performance Computer Architecture (HPCA), February 2015, pp.
161–173.

[20] J. Leng, Y. Zu, M. Rhu, M. Gupta, and V. J. Reddi, “GPUVolt:
Modeling and characterizing voltage noise in GPU architectures,”
in International Symposium on Low Power Electronics and Design
(ISLPED). ACM, 2014, pp. 141–146.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,” in
International Symposium on Microarchitecture (MICRO), December
2009, pp. 469–480.

[22] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu, “VRSync: Charac-
terizing and eliminating synchronization-induced voltage emergencies
in many-core processors,” in International Symposium on Computer
Architecture (ISCA), June 2012, pp. 249–260.

[23] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: A Tool to Model Large Caches,” HP Labs, Tech. Rep. HPL-2009-
85, 2009.

[24] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU performance via large warps and
two-level warp scheduling,” in International Symposium on Microar-
chitecture (MICRO), December 2011, pp. 308–317.

[25] M. D. Powell and T. N. Vijaykumar, “Pipeline muffling and a priori
current ramping: architectural techniques to reduce high-frequency in-
ductive noise,” in International Symposium on Low Power Electronics
and Design (ISLPED), August 2003, pp. 223–228.

[26] V. J. Reddi, M. S. Gupta, G. Holloway, G. yeon Wei, M. D. Smith, and
D. Brooks, “Voltage emergency prediction: Using signatures to reduce
operating margins,” in International Symposium on High Performance
Computer Architecture (HPCA), February 2009.

[27] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-
Y. Wei, and D. Brooks, “Voltage smoothing: Characterizing and
mitigating voltage noise in production processors via software-guided
thread scheduling,” in International Symposium on Microarchitecture
(MICRO), December 2010, pp. 77–88.

[28] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in International Symposium on Microarchitec-
ture (MICRO), 2012, pp. 72–83.

[29] R. Thomas, K. Barber, N. Sedaghati, L. Zhou, and R. Teodorescu,
“Core Tunneling: Variation-aware voltage noise mitigation in GPUs,”
in International Symposium on High Performance Computer Architec-
ture (HPCA), 2016, pp. 1–13.

[30] X. Zhang, T. Tong, S. Kanev, S. K. Lee, G.-Y. Wei, and D. Brooks,
“Characterizing and evaluating voltage noise in multi-core near-
threshold processors,” in International Symposium on Low Power
Electronics and Design (ISLPED), 2013, pp. 82–87.

89

Authorized licensed use limited to: The Ohio State University. Downloaded on August 14,2024 at 19:55:30 UTC from IEEE Xplore. Restrictions apply.

