
Distributing Deep Neural Networks with Containerized Partitions at the Edge

Li Zhou1, Hao Wen2, Radu Teodorescu1, and David H.C. Du2

1The Ohio State University, 2University of Minnesota, Twin Cities

Abstract
Deploying machine learning on edge devices is becoming
increasingly important, driven by new applications such as
smart homes, smart cities, and autonomous vehicles. Unfor-
tunately, it is challenging to deploy deep neural networks
(DNNs) on resource-constrained devices. These workloads
are computationally intensive and often require cloud-like re-
sources. Prior solutions attempted to address these challenges
by either sacrificing accuracy or by relying on cloud resources
for assistance.

In this paper, we propose a containerized partition-based
runtime adaptive convolutional neural network (CNN) ac-
celeration framework for Internet of Things (IoT) environ-
ments. The framework leverages spatial partitioning tech-
niques through convolution layer fusion to dynamically select
the optimal partition according to the availability of computa-
tional resources and network conditions. By containerizing
each partition, we simplify the model update and deployment
with Docker and Kubernetes to efficiently handle runtime
resource management and scheduling of containers.

1 Introduction
Edge devices are becoming increasingly important compo-
nents of the machine learning (ML) revolution. Various emerg-
ing applications are driving the need for deploying machine
learning algorithms to edge devices in smart homes, smart
cities, autonomous vehicles, and healthcare [4, 18, 21]. How-
ever, in most cases, the bulk of the computation, even for
inference problems, is performed entirely within the cloud or
through a hybrid combination of edge and cloud computing.

Cloud-based processing of user-generated data faces sev-
eral challenges and limitations. For instance, uploading user
data to the cloud raises privacy concerns. Consumers are be-
coming increasingly aware of the privacy implications associ-
ated with online services. Furthermore, many IoT applications
require frequent decision making that render cloud-based com-
puting impractical due to the communication latency it brings.

In response to the aforementioned concerns, efforts have
been made to push machine learning inference from the cloud
to the edge, with the benefits of keeping data closer to its
source to provide real-time responses while protecting the
privacy of the end-user. Unfortunately, most machine learn-
ing algorithms are computationally demanding, making edge

devices inadequate for handling such workloads due to their
constrained performance, energy, and memory capacities. To
this end, a significant amount of research has investigated
efficient approaches for deploying DNNs to the edge. This
includes collaborative computation between edge devices and
the cloud [9, 16, 26], model compression and parameters prun-
ing [5, 10, 27, 29], or customized mobile implementations
[11, 12, 22, 31]. Despite all these efforts, having the ability to
scale existing DNNs without sacrificing the model accuracy
and processing the collected data streams in real time present
ongoing challenges to the deployment of machine learning
across edge devices.

In this work, we explore parallel execution of DNN infer-
ence across multiple heterogeneous devices that are energy-
constrained. A possible application that we envision for our
work is local smart home processing. Instead of relaying col-
lected data that includes voice commands, sensor readings,
and video streams from a camera to the cloud, our solution
leverages other smart home devices, such as speakers, light
switches, and hubs to resolve the request. This approach cre-
ates a number of research challenges that need to be addressed:
(1) how to partition the workload efficiently across devices;
(2) how to optimize execution across heterogeneous devices
possessing different compute capabilities, and account for
the higher communication latency in wirelessly connected
devices; (3) how to efficiently deploy and schedule the work-
loads adapting the change of resources in IoT environment.

To summarize, (1) we design a dynamic programming-
based search algorithm to decide the optimal partition and
parallelization for a DNN model. (2) we present a collabora-
tive CNN acceleration framework that adapts to the compu-
tational resources and network condition in the presence of
heterogeneity. (3) we improve the framework flexibility and
reliability by utilizing Docker1 and Kubernetes2 to dynami-
cally assign containers composing a DNN job onto a single or
multiple devices based on the status of the available devices.

2 Background and Related Work
CNN layers. A convolutional neural network consists of an
input, an output layer, and multiple hidden layers. The hid-
den layers typically consist of a stack of convolution, nor-

1https://www.docker.com/
2https://kubernetes.io/

DeploymentHardware Profiling Model Partition and Parallelization

Regression models

 (i) Model partition

& fusing points

(ii) Parallelization for

each partition

Edge devices Comm latency

DNN modelDNN layers Edge devices

IoT+
Profiling

+
Containerize

partitions

Deploy with

KubernetesIoT network

Input

Optimization

Schedule

Figure 1: Design overview.

malization, ReLU (i.e., activation functions), pooling, and
fully-connected layers. The convolution (conv) layer is the
core building block, and takes most of the computation time
in a CNN model (e.g., 73.8% of VGG-16 [25] and 99.93%
of YOLOv2 [23]). The normalization/ReLU/pooling layers
are less compute intensive and often optimized to compute
with a previous operator. As such, we group them with the
corresponding previous layer that produces their input. The
high-level reasoning in the neural network is done via a dense
or fully-connected (f c) layer. The value of each output is
calculated from the weighted sum of all inputs. Efficiently
parallelizing a CNN model is equivalent to parallelizing conv
and fc layers, which are among the most compute and data
intensive layers of a CNN model.
Existing approaches. Current techniques enabling DNN-
based intelligent applications fall into two categories: cloud-
based and edge-only approaches. Cloud-based approaches [3,
8, 14, 16, 20, 26, 30] fully (i.e., cloud-only) or partially
(i.e., edge-cloud collaboration) offload the computation to
the cloud. Neurosurgeon [16] proposes to distribute a DNN
model between edge devices and the cloud by deciding a
single partition point. IONN [14] designs incremental model
uploading with multiple partition points to overlap the local
client and server executions.

Edge-only approaches [6, 9, 10, 12, 19, 22, 28, 32] execute
the DNNs on a single edge device with specialized hard-
ware or a small IoT cluster. Collaborative computing enables
a small IoT cluster to run larger models or speedup infer-
ence by employing the available idle devices. MoDNN [19]
uses layer-wise parallelization, however the MapReduce-like
execution results in a large amount of intermediate data to
be transferred among devices. Collaborative perception [9]
pipelines the computation by partitioning a DNN model and
distributing the partitioned blocks to multiple edge devices.
DeepThings [32] reduces the communication cost by fusing
the early convolution layers and parallelizing these layers in
multiple devices.
Deep learning in containers. The cloud infrastructure like
Amazon Web Services3, Microsoft Azure4, and Google Cloud
Platform5 is built on the idea of virtual machine (VM), Com-

3https://aws.amazon.com/
4https://azure.microsoft.com/
5https://cloud.google.com/

pared with VMs, containers are more lightweight and can
run multiple instances of an application on top of one operat-
ing system. Without the need for a unique operating system,
startup and shutdown of a container are much faster than a
VM [24], while an equivalent or better performance is pro-
vided [7]. Not surprisingly, cloud providers are deploying ML
services with containers [1, 13], using Docker for creating
and running containers and Kubernetes for orchestrating and
managing containers.

3 Distributing DNNs Inference at the Edge
Figure 1 provides an overview of our approach. First, a simple
model of the available devices and their compute capabilities
is generated. Next, our framework uses parameterized perfor-
mance prediction models for multiple DNN layer types. At
runtime, the framework predicts the execution time for each
layer based on available devices and communication latency,
and selects the best partition points and parallelization strate-
gies for each partition. To accommodate the heterogeneity of
the compute environment, partition sizes are chosen to match
device capabilities. Then, the partitions are containerized,
distributed and executed across multiple devices.

3.1 Parallelizing DNN Layers
We first explore the dimensions that parallelize layers in a
DNN model. In our framework, we use channel partitioning
and spatial partitioning to parallelize a 2-dimensional convo-
lution layer. As shown in Figure 2a, in a conv layer each filter
generates a feature map (i.e, a channel of the output feature
maps). The output feature maps can be partitioned along the
channel dimension such that each device computes a subset
of the output feature maps. This requires mapping the corre-
sponding set of filters to each device. The input maps have to
be replicated across all the devices. The fully-connected layer
can also be parallelized using channel partitioning.

An alternative approach is to partition the output feature
maps spatially (i.e., by height and width) and assign them to
multiple devices. Each device keeps a copy of the network and
computes a subset of the output feature maps. As Figure 2b
shows, compared with channel partitioning where the entire
input has to be transferred to all devices, in spatial partitioning
each device only requires a subset of the input. This greatly
reduces communication costs in edge networks that rely on

wireless communication.

k

C
C

k
filters

input fmap output fmaps

...
...

(a) Channel partitioning

C
C

output fmapsinput fmap

filters

(b) Spatial partitioning

Figure 2: Parallelizing a 2D convolution layer with channel
(a) and spatial (b) partitioning.

We now introduce two parallelization strategies used in our
framework to parallelize a DNN model.
Layer-wise parallelization. Prior work [17] has shown that
the best parallelization strategy depends on the characteris-
tics of the DNN (i.e., layer type, shape of feature maps and
size of filters). As a result, layer-wise parallelization [15]
has been proposed to allow each layer to be parallelized in-
dependently using the appropriate technique to obtain the
best performance. In our evaluation, we parallelize each layer
using either channel or spatial partitioning. However, in layer-
wise parallelization, each device computes part of the output
of the current layer and all the subsets of the output need to
be merged and re-partitioned before executing the next layer.
This requires output to be gathered by a host node, partitioned
and re-sent to all client devices. In a wireless network this
results in substantial communication overhead. For our sys-
tem, the benefits of layer-wise parallelization are generally
defeated by the communication costs.
Fused-layer parallelization. To reduce the data movement
between layers, we propose using fused-layer parallelization.
The concept of layer fusion was first proposed in [2] as a
method to reduce off-chip data movement in a CNN accelera-
tor. The idea is to send the output of one layer directly to the
input of the next layer without going through memory.

We propose extending this concept combined with spatial
partitioning by parallelizing multiple fused layers as a single
fused-layer block instead of single layers individually. Par-
titioning is performed layer-by-layer starting from the last
layer in the fused block. Each layer’s input is the output of the
previous layer. The required input elements for each partition
are calculated based on its output elements. For conv layer, we
also need to extend each partition’s input by b fi/2c (fi is the
size of filters of layer i) on height and width for overlapping
elements. The process is applied recursively up to the first
layer in a fused block.

The partitions of fused-layer blocks are next distributed for
computation. All convolution layers in the fused block will
now be computed locally and only the output of the last layer
will be merged. This reduces communication costs because
only the input of the first layer and the output of the last
layer need to be communicated between devices. The more
layers are fused, the more communication costs are reduced.
However, fused-layer partitioning introduces additional costs

compared to layer-wise partitioning. The overlap in input
partitions adds to the communication cost of distributing those
partitions, and adds redundant computation to each node. This
cost increases with the number of fused layers. As a result,
finding the optimal number of layers to be included in a fused
block requires carefully balancing the costs and benefits of
layer fusion.

Deploying fused-layer parallelism in our environment in an
optimal way requires answering the following questions: (1)
which layers should be fused, (2) how many layers to include
in each fused block, (3) for each fused and unfused block,
how many partitions/devices offer the optimal performance
and (4) how to match the partition size to the capability of the
device in a heterogeneous environment?

3.2 Partitioning a DNN Model
Answering the aforementioned questions requires solving a
multivariate optimization problem. We present a dynamic
programming based search algorithm to find the parameter
values that are projected to achieve the lowest execution time
under our cost model.
Problem definition. Given a CNN model G with n layers,
where li ∈G is a layer in the model and edge (li, l j) is a tensor
that is an output of layer li and an input of layer l j. The model
runs on a list of devices D, and we assume the communication
bandwidth of each connection between two devices (di,d j)
is known. Our goal is to find a hybrid parallelization strategy
S = S lw ⋃

S f l (lw: layer-wise, f l: fused-layer) such that the
execution time T (G,D,S) is minimized.
Cost model. We develop a performance model to guide the
optimization search. To construct the model for each layer
type, we vary the configuration parameters of the layer and
measure the latency for each configuration. Using the profiles,
we build a regression model for each layer type to predict
execution latency. To predict the communication cost, we
use a similar approach by varying the data transfer size and
measuring the latency.

The cost functions for each layer li ∈ G lw (i.e., tl(i)) is de-
fined as the total time of the input/output tensors transfer and
layer computation under layer-wise parallelization strategy
S lw(i). Next, assuming several consecutive convolution layers
are grouped (i.e., fusing j consecutive layers from layer i) un-
der fused-layer parallelization strategy S f l . The cost function
for a fused block l(i, j) ∈ G f l (i.e., t f (i, j)) is then defined as
the total data transfer time of the first layer’s input tensor, the
last layer’s output tensor, and the sum of the computation time
of all grouped layers. Next we define:

T (G,D,S) = ∑
li∈G lw

tl(i) + ∑
l(i, j)∈G f l

t f (i, j) (1)

where T (G,D,S) estimates the total execution time of a single
inference for a model G = G lw ⋃

G f l on a list of devices D
under a hybrid layer-wise/fused-layer parallelization strategy
S = S lw ⋃

S f l .

Input

A

B

Output

A

B

1

Local

execution

time (A)

Input transfer time (A)

Output tr
ansfer

tim
e (A

)

Remote

execution

time (A)

21

31

0Input

2i-1

3i-1

......

......

4

Local

execution

time (B)

Input transfer time (B)

Output tr
ansfer

tim
e (B

)

Remote

execution

time (B)

51

61

7

5j-1

6j-1

......

......

Output

i-1 partitions

j-1 partitions

Figure 3: Example of model execution graph.

Dynamic programming-based optimization. Given the
relatively small optimization space, we use dynamic
programming-based search through the space of possible so-
lutions. We start by determining the optimal parallelization
configuration for each layer, and each fused block by find-
ing the optimal S lw and S f l with two tables of cost tl(.) and
t f (.). Then we use the dynamic programming based search
algorithm to find the optimal placement of fused blocks in a
model. We define the fused-layer partitioning problem as fol-
lows. Given a CNN model G with n layers and tables of cost
tl(.) and t f (.), determine the minimum cost to(i, j) (equivalent
to To(G,D,S) when i = 0, j = n) obtainable by partitioning
the model that can be achieved through layer fusion.

We give the general equation for dynamic programming as
below:

to(i, j) =


0 j = 0,
tl(i) j = 1,
min

1≤k≤ j
(t f (i,k)+ to(i+ k, j− k)) otherwise.

(2)

3.3 Deploying a DNN Model with Containerized
Partitions

Figure 3 shows an example of model execution graph after
partitioning. Assuming a CNN model is divided into two
blocks, and each block includes i and j partitions respectively.
Each block may include one or more fused layers. The local
device that captures the input (e.g., a video camera or smart
speaker) is responsible for partitioning the input tensor, and
distributing the partitioned input among devices. The remote
devices start to execute once a task is received and send the
results back once the job is completed. All results will be
merged at the local device and re-partitioned for the next
block.

We containerize each partition and deploy the model by
utilizing Kubernetes to launch pods on the edge devices. Ev-
ery pod runs a same Docker image, but may run different

partitions and take different data as input. Note that it is pos-
sible that the optimal configuration for some blocks is to run
on a single device, in which case they will be deployed us-
ing a single pod. Otherwise, multiple pods will be launched
and scheduled across edge devices according to the computa-
tion capabilities of each device and the resources required by
each partition. Partitions belonging to different blocks form a
pipeline, while partitions belonging to the same block run in
parallel.

The performance of edge devices in IoT network often
fluctuates. We may need to recalculate the optimal partitions
based on the current status of each device after a period of
time. Note that the interval of recalculating the optimal parti-
tions should be carefully selected to avoid DNN performance
degradation and high overhead caused by rescheduling pods
frequently. In our system, it takes around 2000 ms to find
the optimal partition points, create and launch a pod before
it starts to run. The system periodically recalculating the op-
timal partition points, once there is a change in the model
execution graph, we will adjust the configurations of pods and
reschedule them.

In addition, devices may fail in IoT network. In order to
recover from device failures quickly without affecting the
pods running in normal, a static virtual IP for each pod is
allocated by Kubernetes. Each pod talks to its upstream and
downstream pod via virtual IPs. The association of a virtual
IP with a pod is based on where the pod locates in the model
execution graph. If a device fails, we can easily launch a
new pod on another device and associate the new pod with the
virtual IP. In this way, pods running normally are not affected.

4 Evaluation
Experimental setup. We create multiple virtual machines
(VMs) with limited capabilities to emulate IoT devices. All
VMs are running in a cluster, where each physical server has
two six-core Intel Xeon 2.40 GHz E5-2620 v3 CPUs, 64 GB
of memory, and is connected to an HP ProCurve 5406zl switch
through a 1Gb/s Broadcom NetXtreme BCM5720 NIC port.
The inbound and outbound network bandwidth of each VM is
configured through Linux Traffic Control (TC) infrastructure.
All physical servers and VMs run Ubuntu 18.04. We deploy
a Kubernetes (Release-1.7) cluster among these VMs. In the
following experiments, we set up 5 VMs to run as 5 IoT
devices.

4.1 Latency Improvement
We explore three different parallelism schemes in our pre-
liminary experiments and show how they react to different
computation and network conditions in Figure 4 by running
VGG-16 inference using TensorFlow.

In All-In-One case, the whole VGG-16 model runs in a
single device. Based on Sec. 3.2, we partition the VGG-16
model into five blocks. The first three blocks are fused layer
blocks containing 7, 3 and 3 convolution layers respectively,

 0

 1

 2

 3

 4

 5

 6

500K−1.2G
5M−1.2G

200M−1.2G

500K−2.4G
5M−2.4G

200M−2.4G

Network Speed − CPU Frequency (bits/s − Hz)

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

 18

 19

 20

 21

Network Speed − CPU Frequency (bits/s − Hz)

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

All−In−One

Pipeline

Parallel

Figure 4: Latency under different computation and network
conditions with 95% confidence interval.

while the last two blocks include 1 and 2 fully-connected
layers respectively. In the Pipeline case, each device holds
one block of the VGG-16 model, and each block is running
inside a Kubernetes pod. Computations on these five devices
form a pipeline.

In the Parallel case, we use four devices to compute and
one device to act as a hub. For each block, we divide the input
of the first layer into four partitions. Each partition runs in a
Kubernetes pod. Unlike in the Pipeline case, each block in the
Parallel case has four pods running at the same time, working
on different partitions of the input. This way four devices run
in parallel to contribute to the computation of a single block to
speedup execution. After finishing the computation, each pod
will send its result to the hub. After receiving the results from
all four pods belonging to the same block, the hub will merge
and re-partition the results and send new input partitions to
the same four pods again to compute the next block.

For each case, we test the latency under three different
CPU and network conditions. For network, we configure slow,
median and fast, with bandwidth among devices limited to
500 Kbps, 5 Mbps and 200 Mbps respectively. Under each
network configuration, we allocate either one CPU core or
500 millicores to each pod to emulate a CPU at 2.4 GHz or
1.2 GHz. We ensure the memory is enough for each pod so
that there will be no disk swap involved.

We test each case 100 times with randomly generated input
tensors to rule out the possible influence of the cache, and
present the results with 95% confidence intervals in Figure 4.
When the network is slow, we observe that Parallel can be
10x or 20x slower than All-In-One. However, parallelizing a
DNN model starts to improve performance as network speed
increases. When network is fast, Parallel achieves 47.94%
(1.2 GHz) and 44.15% (2.4 GHz) reduction in execution time
compared with All-In-One. This is because Parallel has the
highest parallelism among these three cases. More speedup
is expected with even faster networks, e.g. with the arrival
of the 5G standard. For a lower computation capability, the
improvement is more obvious. Since our framework is able
to evaluate the cost of different partition and parallelization
schemes, it opts to run VGG-16 in a single device, and thus

 0

 5

 10

 15

 20

 25

 30

 35

500K 5M 200M

J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

 (
s
)

Network Speed (bits/s)

Parallel−Even
Parallel−Adaptive

Figure 5: Latency with 95% confidence interval under differ-
ent network conditions with heterogeneous devices.

has the same performance as All-In-One when network is slow.
As Pipeline does not increase parallelism, it does not bring
obvious latency reduction when the network is fast. What’s
worse, it suffers the same problem as running in parallel when
the network is slow.

4.2 Heterogeneous Devices
To adapt to the heterogeneity of an IoT environment, the
framework adjusts the task size for each device based on the
current availability of computational resources. We define a
device as busy when its resources are almost occupied, for
example, running an another job at the same time. We test the
latency of running a VGG-16 reference in the presence of het-
erogeneity. In the experiment, we reduce the available CPU
to 125 millicores to represent a busy device, while all other
normal devices allocate 500 millicores. To accommodate this
change, the input tensor size of assigned partition will be ad-
justed accordingly. In Figure 5, we show the effectiveness of
adapting to the heterogeneous devices. In Parallel-Adaptive,
the size of input we allocate to the busy device is 1/4 of that
allocated to a normal device. In Parallel-Even, we distribute
the input tensor evenly to four devices. In fast and median
network, we achieve a speedup of 50.69% and 39.45% re-
spectively. That’s because the busy device has a smaller size
of task to compute and finish almost at the same time with
normal ones for each block. However, when network is slow,
it increases the amount of data to be transmitted on network
for a normal device. The large latency in network transfer
cancels out the speedup in computation. Nevertheless, our
framework will opt to run the DNN job in a single normal
device in this case.

5 Conclusion
In this paper, we propose containerized partition-based CNN
inference acceleration framework at the edge. The frame-
work dynamically partitions a DNN model that adapts to the
changes of computational resources and network condition.
We containerize and deploy each partition on a small cluster of
IoT devices using Kubernetes for better resource management
and scheduling.

6 Discussion Topics
We envision the deployment of our system in an environment
such as a smart homes, in which devices of different types
and compute capabilities collaborate to solve a joint task. We
would like to open up discussions around this work and gather
feedback for the following aspects:
Granularity for DNN containerizations. Containers are
widely used in the cloud for big data analytics and ML appli-
cations. The whole model is often containerized as a service.
In this work, we explore the finer granularity of containeriz-
ing a DNN model at the edge, and discuss the opportunity
of utilizing multiple containers to run a single DNN model
across multiple edge devices.
Impact of 5G for ML at the edge. Our work is based on
the observations of limited computing ability of edge devices
and the upcoming 5G network. In the 5G era, much faster
communication speed will be available, which can potentially
change today’s computation and communication ratio at the
edge. It would be interesting to discuss what changes it will
bring in the cases of smart homes, cities, self-driving cars and
so on, where a small local cluster is available while internet
connection is not present. This paper shows the benefits of
distributing a DNN job onto multiple edge devices when
the network is fast. The benefits will be further increased by
the 5G network. However, if network speed is slow, it may
be more suitable to run DNN on a single device, which has
been discussed in Sec. 4. We plan to fully explore the trade-
offs between computation and communication when running
DNN jobs, and study more complicated cases such as the
presence of network heterogeneity.
Fault-tolerance support. IoT devices may go offline from
the network at any time for any reason. A discussion on fault-
tolerance design at the edge is important. In future work, we
plan to focus on improving fault-tolerance of containerized
model partitions. We will look into the implementation of effi-
cient container migration when a device runs into unexpected
situations, such as receiving higher priority tasks. The con-
tainerized partition in execution should be quickly transferred
to another available device and resume the job. We also plan
to validate the framework on IoT hardware like Raspberry Pi.
Sensitivity to status change. In this paper, we state that we
will adjust the configurations of pods and reschedule them,
when there is a change in the model execution graph caused
by status changes of edge devices. How sensitive the system
should adapt to status change is an important issue. A high
sensitivity will lead to frequent pods rescheduling which may
block DNN job execution. A low performance will result in
performance degradation due to overload on busy devices.
We leave setting an appropriate sensitivity as a future study.

Acknowledgments
The authors would like to thank the anonymous reviewers
for their feedback. We also extend special thanks to Irfan

Ahmad for suggestions on the camera ready. This work was
supported in part by NSF Award 1439622, 1812537 and NSF
XPS Award 60053525.

References
[1] Containers overview. https://cloud.google.com/ml-engine/

docs/containers-overview.
[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-

layer cnn accelerators. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, page 22. IEEE Press, 2016.

[3] Amazon. Machine learning on AWS. https://aws.amazon.com/
machine-learning/.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training
deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014.

[6] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision. In Pro-
ceedings of the 24th ACM International Conference on Mobile Com-
puting and Networking, pages 115–127, 2018.

[7] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An
updated performance comparison of virtual machines and linux contain-
ers. In 2015 IEEE international symposium on performance analysis
of systems and software (ISPASS), pages 171–172. IEEE, 2015.

[8] Google. Cloud machine learning engine. https://cloud.google.
com/ml-engine/.

[9] Ramyad Hadidi, Jiashen Cao, Matthew Woodward, Michael S Ryoo,
and Hyesoon Kim. Distributed perception by collaborative robots.
IEEE Robotics and Automation Letters, 3(4):3709–3716, 2018.

[10] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[12] Intel. Movidius Neural Compute Stick. https://software.intel.
com/en-us/movidius-ncs.

[13] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serv-
ing deep learning models in a serverless platform. In 2018 IEEE In-
ternational Conference on Cloud Engineering (IC2E), pages 257–262.
IEEE, 2018.

[14] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook
Moon. IONN: Incremental offloading of neural network computations
from mobile devices to edge servers. In Proceedings of the ACM
Symposium on Cloud Computing, pages 401–411, 2018.

[15] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. Exploring hid-
den dimensions in parallelizing convolutional neural networks. arXiv
preprint arXiv:1802.04924, 2018.

[16] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[17] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[18] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[19] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and

https://cloud.google.com/ml-engine/docs/containers-overview
https://cloud.google.com/ml-engine/docs/containers-overview
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs

Yiran Chen. Modnn: Local distributed mobile computing system for
deep neural network. In 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1396–1401. IEEE, 2017.

[20] Microsoft. Azure machine learning service.
https://azure.microsoft.com/en-us/services/
machine-learning-service/.

[21] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen
Guizani. Deep learning for IoT big data and streaming analytics: A
survey. IEEE Communications Surveys & Tutorials, 20(4):2923–2960,
2018.

[22] Nvidia. Jetson Nano. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-nano/.

[23] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger.
arXiv preprint, 2017.

[24] Kyoung-Taek Seo, Hyun-Seo Hwang, Il-Young Moon, Oh-Young
Kwon, and Byeong-Jun Kim. Performance comparison analysis of
linux container and virtual machine for building cloud. Advanced
Science and Technology Letters, 66(105-111):2, 2014.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[26] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed
deep neural networks over the cloud, the edge and end devices. In
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pages 328–339, 2017.

[27] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the
speed of neural networks on cpus. In in Deep Learning and Unsuper-
vised Feature Learning Workshop, NIPS. Citeseer, 2011.

[28] Zirui Xu, Zhuwei Qin, Fuxun Yu, Chenchen Liu, and Xiang Chen. Di-
rect: Resource-aware dynamic model reconfiguration for convolutional
neural network in mobile systems. In Proceedings of the ACM Inter-
national Symposium on Low Power Electronics and Design, page 37,
2018.

[29] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-
parna Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to
the underlying hardware parallelism. In 2017 ACM/IEEE 44th An-
nual International Symposium on Computer Architecture (ISCA), pages
548–560, 2017.

[30] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-
of-the-art and research challenges. Journal of internet services and
applications, 1(1):7–18, 2010.

[31] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:
An extremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6848–6856, 2018.

[32] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
DeepThings: Distributed adaptive deep learning inference on resource-
constrained IoT edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2348–2359, 2018.

https://azure.microsoft.com/en-us/services/machine-learning-service/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/

	Introduction
	Background and Related Work
	Distributing DNNs Inference at the Edge
	Parallelizing DNN Layers
	Partitioning a DNN Model
	Deploying a DNN Model with Containerized Partitions

	Evaluation
	Latency Improvement
	Heterogeneous Devices

	Conclusion
	Discussion Topics

